Search published articles


Showing 6 results for Allometric Coefficient

Seyedeh Arhameh Fallah-Shamsi, Hemmatollah Pirdashti, Aliakbar Ebadi, Masoud Esfahani, Mahmood Raeini,
Volume 4, Issue 1 (9-2017)
Abstract

In order to study drought stress effect at the reproductive stage on seed germination characteristics of seven rice genotypes, an experiment was carried out at Sari Agricultural Sciences and Natural Resources University in 2014. This study was conducted on drought-stressed seeds and seeds grown under normal conditions. The results of orthogonal mean comparison among non-stressed seeds showed that local genotypes had a lower germination index, germination rate, water percentage of seedling tissue, shoot length and root dry weight than the improved genotypes. Among stressed seeds, however, local genotypes had a higher germination index and germination rates than those of improved genotypes. Comparison of non-stressed seeds of susceptible and tolerant genotypes indicated that susceptible genotypes had a higher germination index, germination rate and germination percentage than tolerant genotypes. On the other hand, the comparison of the stressed seeds of susceptible and tolerant genotypes revealed that drought stress increased the time to 10, 50, 90 and 95% germination, water percentage of seedling tissue and plantlet length in susceptible genotypes, which were higher than those of tolerant genotypes. In conclusion, it seems that drought stress at reproductive stage has a significant effect on germination characteristics of the plant’s following generation. However, their responses are different, depending on the level tolerance of the genotype to stress and genetic origin.

Highlights: 
1-  Drought stress at reproductive stage has a significant effect on germination characteristics of the following generation of the rice plant.
2-  Among stressed seeds, local genotypes have a higher germination index and germination rates than those of the improved genotypes.
3-  Drought stress increases the time of germination in susceptible genotypes, which is higher than that in the tolerant genotypes.

Ali Mansouri, Heshmat Omidi,
Volume 5, Issue 1 (9-2018)
Abstract

Extended abstract
Introduction: Quinoa, with the scientific name (Chenopodium quinoa Willd), belongs to the Spencer family. Seeds vigor can be improved with a variety of seed priming methods. In this method, the seeds are soaked in water or various osmotic solutions and then dried to the original moisture. After priming treatment, seeds are stored and cultivated as untreated seeds. Potassium nitrate is the most frequently used chemical for the purpose of increasing seed germination and is recommended by the Society of Official Seed Specialists and the International Association of Seed Testing for germination experiments of many species. In recent years, the use of nanoscale materials has been of great interest to researchers. Chitin, one of the most abundant polysaccharides in nature, is a polymer chain of N-acetyl glucosamine and is associated with other proteins and other organic compounds, and numerous industrial, pharmaceutical and agricultural applications have been reported for it. The present study was carried out to investigate the effects of chitosan nanoparticles and potassium nitrate on some morphological characteristics, germination characteristics, chlorophyll content and relative humidity of quinoa plant.
Materials and Methods: In order to investigate the effect of pretreatment of quinoa seeds with chitosan nanoparticles and potassium nitrate solution on the early stages of germination, a factorial experiment was conducted in a completely randomized design with four replications in Seed Processing Laboratory, Faculty of Agricultural Sciences and Natural Resources, Shahed University, Tehran, Iran. Experimental treatments consisted of priming with chitosan nanoparticles in 4 levels (no primers, 0.01, 0.20 and 0.04% w / v) and potassium nitrate in 3 levels (no primers, 0.2 and 0.5% Weight percent) and hydroperime for 2 hours at 25° C. For each replicate of every treatment 100 seeds, using standard priming methods, were treated with the materials mentioned above and were dried in a petri dish on Watman paper No. 1 at 20 ± 1 ° C and relative humidity of 70% and 16 hours of daylight and 8 hours of darkness to make germination work. After that, germination percentage, root length, shoot length, germination coefficient, Allometric coefficient, relative water content, chlorophyll content a and b were measured, using standard methods.
Results: Seed treatment with 0.2% potassium nitrate solution increased germination by 9% and treatment with chitosan 0.01% increased germination by 14%, compared with the non-primer treatment. The priming treatment with a 0.5% solution of potassium nitrate and 0.01% chitosan increased germination by 36%, compared to the non-primer treatment. Potassium nitrate increased root length by 25% and shoot length by 10%. In addition, chitosan 0.01% increased the root length by 6%, and seeds with chitosan 0.02% and potassium nitrate 0.2% increased the root length by 32%. The effects of potassium nitrate, chitosan and their interaction on chlorophyll a and b were significant at 1% probability level. The highest levels of chlorophyll a were obtained in 0.02% chitosan and 0.2% potassium nitrate. This formulation increased the chlorophyll a content by 33%. The highest amount of chlorophyll b was obtained by applying 0.01% chitosan and 0.5% potassium nitrate.
Conclusion: The results of this study showed that treatment with 0.01% w/v chitosan and 0.5% w/v potassium nitrate resulted in the highest germination percentage, chlorophyll content a and b, relative water content, and stem length. Treatment with 0.02% chitosan and 0.2% potassium nitrate resulted in the highest allometric coefficient and root length.
 
 
Highlights:
  1. Chitosan nano particle and potassium nitrate increase quinoa germination.
  2. Chitosan nano particle and potassium nitrate increase the content of chlorophyll a and b.

Hassan Nouriyani,
Volume 5, Issue 2 (3-2019)
Abstract



Extended abstract
Introduction: Today, various technologies have been developed to improve seed quality with the aim of increasing the percentage, speed and uniformity of germination and improved seedling establishment under different environmental conditions. One of these technologies is seed pre-treatment or seed priming. In this regard, some studies confirmed that pre-treatment of seeds with hormones and plant growth regulators improve germination behavior and its related indices, including average germination time, seed vigor, radicle length, plumule length, germination rate and seedling establishment in primed seeds of sesame. Cognizant of the sensitivity of the germination process as the first plant developmental stage and the importance of improving germination indices and sesame seedling establishment, the aim of this study was to evaluate the seed priming efficiency, using salicylic acid, methyl jasmonate and humic acid in the germination performance, biochemical changes and early seedling growth of two sesame cultivars including Yellow white and local cultivar of Dezful.
Materials and Methods: This experiment was conducted as a factorial based on a completely randomized design with four replications in the seed technology Laboratory of Safi Abad Dezful Agricultural Research Center in the summer of 2015. The first factor was seed pre-treatment with distilled water (control), salicylic acid 0.1mM, methyl jasmonate 1µM, and humic acid 1.5% and the second factor was two varieties of sesame including Yellow white and the local cultivar of Dezful. Germination percentage, germination rate, seed vigor index, radicle length, plumule length, allometric coefficient, proline content, soluble proteins and catalase enzyme activity were determined to compare the treatments.
Results: The results of the experiment showed that seeds priming had a significant effect on germination percentage, germination rate, seed vigor index, radicle length, plumule length, allometric coefficient and seedling biochemical changes, and improved them. The effect of cultivar on all the traits studied, except mean daily germination and plumule length, was not significant. In this research, the Dezful cultivar had an average of 13.52 seeds per day with higher germination rates, compared with the other cultivar (Yellow white). In addition, the interaction of priming × cultivar was significant only in seed vigor index and allometric coefficient, where the comparison of the mean values indicated that the highest seed vigor was obtained by using humic acid 1.5% in the Dezful cultivar (10.09), while the highest allometric coefficient in seed pre-treatment with methyl jasmonate was found in the Yellow white cultivar (1.57).
Conclusions: In this study, the most effective seed priming treatments for improving germination, biochemical changes and seedling growth of sesame was humic acid 1.5%, recorded for the local cultivar of Dezful. Seed priming with humic acid 1.5% was significantly better than the control and Dezful cultivar’s germination performance was better than that of Yellow white cultivar; therefore it can be said that pre-treatment of seed with humic acid with significant effects on germination characteristics of sesame can be more effective in establishment of seedlings. It is advisable to use this organic acid for better root system development and sesame seedlings establishment, which is a major problem at the beginning of the growing season.
 
Highlights:
  1. Humic acid was the most effective seed priming treatment on germination characteristics, biochemical changes and seedlings growth of sesame.
  2. The effect of seed priming treatments on the germination characteristics of the Dezful cultivar was more pronounced than that of Yellow white.

Forough Hajivand Ghasemabadi, Hamid Reza Eisvand, Naser Akbari, Omid Ali Akbarpour,
Volume 6, Issue 1 (9-2019)
Abstract



Extended Abstract
Introduction: Agriculture has been influenced by different abiotic stresses such as temperature, drought and salinity, which reduces roughly half of the yield of crops. In many forage plants, germination and early seedling growth are the most sensitive stages of their growth in the face of environmental stresses. Current research was conducted to study the effects of drought and salinity iso-osmosis stresses on germination indices and growth parameters of three clover species, including Trifolium resupinatum, T. alexandrinum and T. incarnatum.
Material and Methods: Two separate experiments (drought and salinity) were conducted as a factorial experiment based on a completely randomized design with three replications. The test factors included clover species with three levels, including T. resupinatum, T. alexandrinum and T. incarnatum and different levels of drought and salinity potentials (0, -2, -4, -6, -8, -10 and -12 bar) due to polyethylene glycol 6000 (PEG 6000) and sodium chloride (NaCl), respectively. Sterile disposable petri dishes with a diameter of 10 cm were used, in each of which, 27 seeds were placed on filter paper and then 5 ml of the desired treatment solution was added to each. Petri dishes were then placed in a germinator at 20°C and relative humidity of 75%. After the end of the desired time germination (About 14 days), from each petri, germination percentage and rate, number of secondary roots, time to get 50% germination (D50), root to shoot ratio and the number of abnormal seedlings were recorded.
Results: Inhibitory effects of salinity and drought stresses affected all germination indices. Germination percentage, rate of germination, root and shoot length all decreased with increasing stress levels, while time to get 50% germination (D50) increased with the increase in stress levels. Under both drought and salinity, all growth parameters of Trifolium resupinatum were higher than the other two species. Germination percentage of T. incarnatum was 0% at -12 bar of drought, but germination of T. resupinatum and T. alexandrinum was 70.33% and 7.33% at -12 bar of these stresses, respectively. Under salinity conditions, all the seeds of the three species germinated at -12 bar. Root to shoot ratio increased with increasing stress levels and at high stress levels, it decreased. The decreases were 41.39% and 0% in drought and salinity, respectively. The number of secondary roots increased with increasing stress levels and the maximum number was observed in Trifolium alexandrinum which was 5.42 and 1 in drought and salinity, respectively. The number of abnormal seedling increased with increasing salinity levels, while under drought conditions there was no abnormal seedling.
Conclusion: Comparison of the effects of sodium chloride and polyethylene glycol showed that sodium chloride reduced germination index due to toxic effects or osmotic effects more than polyethylene glycol solution. ­­­­­­­­­­­­­­­­­­­It seems that Trifolium resupinatum has the best yield in both drought and salinity stresses, and that in drought condition, Trifolium alexandrinum, and in salinity stress, Trifolium incarnatum have the best performance.
                                                                                                                           
 
Highlights:
  1. Introduction of clover species with more tolerance to drought and salinity in germination stage.
  2. Evaluation of germination indices of clover species under drought and salinity iso-osmotic conditions.

Roya Behboud, Ali Moradi, Hooshang Farajee,
Volume 7, Issue 1 (9-2020)
Abstract



Extended Abstract
Introduction: Sweet corn (Zea mays var. saccharata) is a corn variety that is distinguished from other varieties due to the presence of genes that affect starch production in the endosperm. Given that the most of plants including sweet corn face with problems such as non- uniform germination and poor seed emergence in the early stages of germination. Thus, the use of organic stimulants is one of the ways to reduce the harmful effects of non-biological stresses, increase seed germination, uniform appearance and increase their yield and quality. The present study was carried out to investigate the effect of different concentrations of chitosan on seed germination and some biochemical traits of sweet corn under osmotic potential conditions.
 Materials and Methods: To investigate the effect of chitosan and osmotic stress on germination and biochemical parameters of sweet corn, a factorial experiment was conducted in a completely randomized design with four replications at the Seed Technology Laboratory, Faculty of Agriculture, Yasouj University in 2017. The first factor was osmotic stress at 0, -3, -6, and -9 bar osmotic potentials and the second factor was pre-treatment at five levels of chitosan zero, 0.25%, 0.5%, 0.75% and 1% and one level of distilled water. The seeds were immersed in the desired solutions of chitosan for 3 hours at 25 °C and under dark conditions, and then the pre-treated seeds were germinated under standard germination condition. In each petri dish, 25 seeds were placed on a filter paper and osmotic potential was applied using polyethylene glycol 6000. Seed germination was carried out in the germinator at 25 ± 1 ° C for 7 days under dark conditions. The germination traits and biochemical traits were measured according to standard methods.
Results: Osmotic stress reduced germination percentage and germination rate, seedling vigour length index, germination uniformity coefficient, allometric coefficient, and soluble protein content and also increased the mean germination time, proline, soluble sugar content and hydrogen peroxide. Pre-treatment of seeds with a concentration of 0.5% chitosan increased protein, proline, and soluble sugars content at all osmotic stress levels. At the osmotic stress levels, the highest and lowest levels of hydrogen peroxide respectively were observed in 0.5% chitosan treatment and distilled water treatment. The results showed that pre-treatment with 0.5% chitosan increased germination percentage and rate and seedling vigour length index, and also reduced the mean germination time and malondialdehyde. Pre-treatment of seed with zero and 1% chitosan led to reduction in some of the germination and biochemical traits in comparison with 0.25, 0.5, and 0.75% chitosan.
Conclusions: The results showed that seed treatment with 0.5% chitosan could reduce the harmful effects of osmotic potential on some germination and biochemical traits in sweet corn seedlings and improve seedling growth.
 
Highlights:
1-Chitosan increases the germination percentage and germination rate.
2-Chitosan increases soluble sugars, proline, and soluble protein.
3-Chitosan reduces the amount of malondialdehyde and hydrogen peroxide.

Esmaeil Gholnezhad, Naser Samsami, Abbas Abhari,
Volume 7, Issue 1 (9-2020)
Abstract



Extended abstract
Introduction: Soybean is a plant that has a moderate tolerance to drought stress. Drought stress is one of the most important abiotic stresses affecting soybean production by about 40%. In addition, drought stress reduces seed vigor as a result of stress conditions. Positive effects of mycorrhizal fungi on the increment of dry matter and plant biomass, especially in low-irrigated conditions and in dry areas have been proven. The reason for the increase in crop yield in mycorrhizal inoculated plants is their water balance in water deficit stress conditions and as a result, absorption of water and mineral elements. Rhizobium bacteria, carbohydrates, and other foods are catched from the phloem vessels and the received energy is used to convert nitrogen to ammonium ion and eventually amino acids. Japonicum rhizobium bacterium is not naturally found in soils of Iran and the bacteria should be added to the soil along with seeds.
Materials and Methods: This experiment was carried out to determine the germination characteristics, seed vigor and its related traits in soybean Kosar cultivar grown under drought stress conditions and inoculation with mycorrhiza and bacteria with three replications during 2018. In the field experiment, drought stress included optimal irrigation (irrigation after 70 mm evaporation), moderate stress (irrigation after 110 mm evaporation) and severe drought stress (irrigation after 150 mm evaporation from class A evaporation pan), mycorrhizal fungus in three levels, mycorrhiza-free, and inoculation with glomus mosseae, Glomus intraradices and Rhizobium bacterium in two levels, including no inoculation and inoculation with Rhizobium japonicum.
Results: The mean comparison showed that the seeds obtained under normal irrigation, inoculation with mycorrhiza and bacteria had the highest dry weight of radicle, plumule and seedling, percentage and germination rate. The lowest electrical conductivity of the seeds and the mean time of germination were obtained under these condition. Severe and moderate drought stress reduced stress tolerance index, root tolerance index and stem tolerance index, seedling vigor index and seed vigor index compared to optimum irrigation about 42-23, 38-18, 30-18, 50-26 and 41-21) percent, respectively. Inoculation with Glomus mosseae and Glomus intraradices increased the seed vigor index, radicle lentgh, plumule lentgh and seedling length compared to non-inoculation with mycorhizal fungi by 48-42, 27-26, 41-37 and 35-33 percent, respectively. Inoculation with Rhizobium japonicum increased radicle lentgh, plumule lentgh and seedling lentgh compared to non-inoculation with bacterium by 21%, 16% and 18%, respectively. The highest water percentage in seedling tissue was obtained under optimum irrigation conditions, inoculation with mycorrhizal fungi and inoculation with rhizobium bacteria.
Conclusion: According to the results of this study, in all three different irrigation conditions to improve germination and increase seed vigor, the use of mycorrhiza fungi is effective especially glomus mosseae and inoculation with Rhizobium bacteria.

Highlights:
  1. Germination characteristics, germination rate and duration of soybean Kosar cultivar on seeds obtained under different irrigation conditions were investigated.
  2. The effect of mycorrhiza and bacteria on seed vigor and related traits were evaluated under different levels of drought stress.
  3. The damage done to the seed membranes due to the interaction of irrigation and inoculation with mycorrhiza and bacterium was investigated.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.