Search published articles


Showing 5 results for Soltani

Elias Soltani, Afshin Soltani, Serollah Galesh, Farshid Ghaderi-Far, Ebrahim Zeinali,
Volume 1, Issue 1 ((Spring and Summer) 2014)
Abstract

The aim of this study was to investigate and to quantify the effect of burial depth on seedling emergence of volunteer canola and wild mustard. Seeds were buried in 12 different depths (1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 30 cm) in 4 replications and seedling emergence was measured daily. Results indicated that emergence percentage of volunteer canola was around 98 % from 1 to 2.9 cm of burial depth and deeper depths decreased emergence percentage with a slope of -0.4 and reached to zero in burial depth of 10 cm. Seedling emergence percentage of wild mustard was described using an exponential model on the response to burial depth. According to the model, wild mustard seedling emergence decreased from 66 % in 1 cm depth to 0 % in 8 cm depth. Increasing burial depth leads to reduction of seedling emergence rate that it well quantified for both species. Seeds of these two species that buried in deeper soil layers from 10 cm for volunteer canola and 8 cm for wild mustard can expand soil seed bank and will not emerge. The results of this study may provide useful information in ecological weed management and prediction seedling emergence of weeds.


Fatemeh Aliyari, Ali Soltani, Mehrdad Zarafshar,
Volume 2, Issue 2 ((Autumn & Winter) 2016)
Abstract

Select the appropriate tree species and compatible with harsh environmental conditions, with a high survival rate and optimal growth, is very important in the principled forestation projects. Offering moisture - temperature - time seed germination model is one of the solutions to the prediction of seed germination patterns as in this study, germination behavior model in four replications of 50 seeds of Cupressus arizonica (dishes 11cm) on the incubator was examined by applying five levels of water stress (0, -0.5, -1, -1.5, -2 MPa) and temperature treatments (10, 15, 20, 25, 30 °C). The results showed that the optimum temperature (To) and the basic temperature (Tb) for germination is 19.23±0.5 and 6.54 ± 0.0 °C respectively, and amount of the hydro time constant (θH) for this species is 0.29±0.11. According to the results, temperature and water potential factors and their interaction affected significantly on time and percent germination. Value of the hydrothermal time model was determined by using θHT= [(Ψ-Ψb (g)) (T-Tb)] tough model that its rate was 126.3 MPa°C. d with 0.87 coefficients of determination.


Shirin Taghi Zoghi , Elias Soltani , Iraj Alahdadi , Reza Sadeghi ,
Volume 4, Issue 2 ((Autumn & Winter) 2018)
Abstract

This study was conducted to study the effects of different priming methods on germination rate and percentage under salinity stress and to determine the stability of primed seeds. In order to accomplish this, three different experiments were conducted separately, including the experiment of water uptake, the experiment of salinity stress, and the experiment of storability of primed seeds. Priming treatments were five levels of control (unprimed), hydropriming (Hyd), priming with humic acid (HA), priming with salicylic acid (SA) and priming with gibberellic acid (GA). Salinity stresses were four levels of 0, 4, 8 and 12 ds/m of NaCl. The stability of prime seeds was investigated over a period of 226 days after priming. The results of water uptake showed that rapeseeds entered into the third phase of water uptake after 18 hours of hydration. The results of the salinity experiment showed that salinity levels of 12 and 0 ds/m had the lowest (74.3 %) and highest (83 %) germination percentage, respectively. In terms of germination rate, there were significant differences between GA (0.034 h-1), HA (0.036 h-1) and Hyd (0.036 h-1) with C (0.019 h-1) and SA (0.027 h-1). Generally speaking, primed seeds germinated better than control seeds at all levels of salinity. The storability of primed seeds and control seeds had no significant decrease during storage. Finally, it was concluded that seed priming increased the tolerance to salinity stress; in terms of storability, there was no significant difference between primed seeds and primed seeds could be stored in the same way as control seeds.

Highlights:

  1. At the current research, the stability of prime seeds was investigated for the first time.
  2. There was no significant difference between the storability of primed seeds and control (unprimed) at each sampling time (with an exception for SA).
  3. Primed seeds had better germination performance than control at the all salinity stress levels.
  4. Seed priming treatments using gibberellic acid, humic acid and hydropriming were the best compared with the other treatments.

Farnaz Porali, Farshid Ghaderi-Far, Elias Soltani, Mohammad Hadi Palevani,
Volume 5, Issue 2 ((Autumn & Winter) 2019)
Abstract

DOR: 98.1000/2383-1251.1397.5. 1.10.2.1605.41

Extended abstract
Introduction: Germination speed is one of the most important germination indices, used in most studies to compare the effects of different treatments on seed germination. Researchers use the reverse time up to 50% maximum germination (1/D50) to calculate the germination rate. One of the methods used for calculating the D50 is the utilization of nonlinear regression models such as Logestic, Gompertz, Richard, Weibull and Hill. In addition, for the purpose of calculating this parameter, simple empirical models such as the model presented by Farooq et al. and Ellis and Roberts are used. The question which arises is which of these methods has more precision predicting D50. The purpose of this study was to calculate D50, using different methods in seed germination of cotton.
Material and Methods: In this experiment, cottonseeds were placed at three temperatures of 15, 25 and 40°C with three replications, and germinated seeds were counted daily several times. To calculate D50, several nonlinear regression models including Gompertze, Logestic, Hill (the four-parameter), Richard and Weibull models were used. Moreover, for the purpose of calculating D50, the models presented by Farooq et al. and Ellis and Roberts were used.
Results: The results showed that all nonlinear regression models exhibited suitable fit to germination data. However, logestic, Hill and Weibull showed better predictability of D50, compared with other models. Besides, D50 calculated by the Farooq model was similar to that estimated by nonlinear regression models, whereas D50 estimated by the Ellis and Roberts model was higher than that estimated by other models.
Conclusions: The results of this study showed that both non-linear regression models and the model developed by Farooq could be used to calculate D50 of cottonseed. In general, the results of this study showed that nonlinear regression models could be used to calculate D50. In this research, Logestic, Hill, and Weibull showed good fit for cumulative seed germination data of cotton seeds versus time at different temperatures. These models have coefficients that have a biological concept that includes maximum germination percentage, time to 50% maximum germination and time to start germination. Moreover, when researchers only seek to measure D50 and are not familiar with the statistical software, they can use the empirical formula presented in this research.
 
Highlights:
  1. Calculating D50 in cottonseeds, using different methods.
  2. Using nonlinear regression models to calculate D50 in cottonseeds.
  3. Developing a proper method which is more accurate, and better lends itself to calculating D50 of cottonseeds.

Hasan Teimori, Hamidreza Balouchi, Ali Moradi, Elias Soltani,
Volume 5, Issue 2 ((Autumn & Winter) 2019)
Abstract

DOR: 98.1000/2383-1251.1397.5. 105.10.2.1578.1601

Extended abstract
Introduction: Seed germination is one of the first important and complex stages in the plant life cycle and is affected by many hereditary and environmental factors. Various factors affect germination and seedling establishment. Among these factors are the characteristics of the maternal plant (nutrition, genetics), seed treatment stage at harvest time, as well as environmental factors (temperature, water potential, and ventilation and soil compaction). Also, under the influence of seed loss during storage, seed vigor, which is known as the first component of seed quality, decrease. The aim of this study was investigation of germination and biochemichal responses of the aged seed of Fenugreek to different temperature and humidity ranges.
Materials and Methods: This experiment was conducted as a factorial based on a completely randomized design with four replications in the Laboratory of Seed Science and Technology, Faculty of Agriculture, Yasouj University in 2016. The experimental treatments consisted of nine levels of temperature (5, 10, 15, 20, 25, 30, 35, 40 and 45 degrees Celsius), water potential included seven levels (zero (control), -0.2, -0.4, -0.6, -0.8, -1 and -1.2 MPa) and seed aging at two levels (no aged (control) and aged seed).
Results: In this experiment, the effect of seed aging, water potential and their interactions on each environment on germination indices (germination percentage and germination rate, length and weight vigor index) and biochemical indices (soluble sugar, proline, soluble protein and catalase enzymes) of Fenugreek seeds were significant. The results showed that in the aged seed the germination percentage and rate and seedling vigor index tended to decrease with water potential reduce in temperature lower and higher than 20 degrees Celsius, and the amount of biochemical components of the seed (soluble sugar, soluble protein, proline, and catalase enzyme) also increase.
Conclusion: In general, germination and biochemical indices of seed of Fenugreek are sensitive to water potentials, aging, and seed germination temperatures, respectively. In terms of osmotic potential decrese, the germination temperature of less than 20 ° C resulted in increased germination resistance of fenugreek seed to a more negative water potential.
 
Highlights:
  1. Study of germination and biochemical properties of fenugreek seed aged under different level of osmotic potantials and temperatures.
  2. In areas with a lower osmotic potential it is better to cultivate Fenugreek seed at temperatures below 20 °C.


Page 1 from 1     

© 2019 All Rights Reserved | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.