Search published articles


Showing 8 results for Moradi

Ali Moradi, Farzad Sharif Zadeh, Reza Tavakkol Afshari, Reza Maali Amiri,
Volume 1, Issue 2 ((Autumn & Winter) 2015)
Abstract

Seed priming is one of the most important techniques used to improve seed germination under biotic and abiotic stresses. For this purpose, germination and seedling growth characteristics of primed seeds of Tall wheatgrass (Agropyron elongatum (Host.) P. Beauv) were evaluated under drought and low-temperature condition. A factorial experiment was conducted on the basis of randomized completely block design with three factors with four replications. The experimental factors were priming with two levels including urea primed (using urea -4 bar at 10 °C for 36 h) and non-primed seeds germination temperatures, including 3, 6, 9, 12, 15, 20 and 25 °C and osmotic potential including zero (distilled water), -3, -6, -9, and -12 bars (applied by polyethylene glycol 6000). Increasing trend has been observed for all germination indices, except mean germination time, with increasing temperature from 3 to 25 °C and seeds revealed the greatest sensitivity to temperatures below 9 °C. However, this trend was reversed with increasing drought stress, the seeds sensitivity to drought stress started from the potential of -6 bar and reached the maximum in -12 bar. However, primed seeds compared to non-primed seeds have demonstrated better germination under both drought and low-temperature stresses. The results of this study showed that the highest seedling vigor index and germination rates achieved in the temperature range of 20-25 °C and water potential of zero to -3 bar.


Amin Salehi, Asad Masumiasl, Ali Moradi,
Volume 2, Issue 1 ((Spring and Summer) 2015)
Abstract

Bilhar or Mountain Kandall (Dorema aucheri) belongs to Apiacea family that contains flavonoid and coumarine compounds. Since propagation of this plant in natural habitats occurs through seed and due to deep dormancy, the identification of different seed dormancy breaking methods is necessary for the preservation of this species. In this respect, different methods, including chilling, washing and gibberellic acid was studied, on the seeds gathered from Kohgiloyeh and Boyerahmad province. For this reason, a factorial experiment with three factors was done based on a completely randomized design in three replications, in the faculty of agriculture, Yasouj University, in 2012. Experimental factors were included, chilling period (stratification periods of 3 and 4 weeks), gibberellic acid (zero and 1500 ppm) and washing (washing with distilled water and non-washable). Results showed that 4 weeks chilling treatment had maximum germination percentage and germination rate and seedling vigor. Also, maximum root and shoot dry weight were obtained from the seeds of this treatment. Whereas, double and triple interaction effects for germination percentage, epicotyl and hypocotyl length were not significant. Germination percentage was better in 4 weeks prechilled seed than 3 weeks. Obtained results from this research showed that Bilhar seeds have the physiological dormancy.


Bita Oskouei, Eslam Majidi-Hervan, Aidin Hamidi, Foad Moradi, Ali Moghaddam,
Volume 2, Issue 2 ((Autumn & Winter) 2016)
Abstract

This experiment was conducted as a factorial experiment based on a completely randomized design with three replications at two locations: Agricultural and natural resource center of Ardebil province (Moghan) and seed and plant certification and registration institute of Karaj in 2013. The treatments included: planting date in three levels (10-May, 25-May and 9-Jun), seed moisture content at harvest time in four levels (30%, 25, 20 and 15) and seed size in three levels (flat, round and medium). The measured traits were a standard germination test, mean time of germination, seedling weight and length vigor index, germination percent in radical emergence test and germination percent in cold test. The results illustrated that delayed planting caused reduction of seed quality and this reduction was more obvious in delayed harvest (15%), also the reduction rate in round seeds was more than flattered and medium seeds. The minimum percentage of germination and vigor were seen in round seeds of third planting date and moisture harvest by 15%. So it is recommended for corn seed production to sow the seeds before the last week of May and when seed moisture content reached 30 percent, cob harvesting should be started and the harvest not is delayed.


Omid Ansari, Farshid Ghaderifar, Farzad Sharif Zadeh, Ali Moradi,
Volume 3, Issue 2 ((Autumn & Winter) 2017)
Abstract

The present study sought to evaluate the effect of different temperatures on germination and to determine cardinal temperatures (i.e., base, optimum and maximum) of Secale mountanum at temperatures of 3, 5, 10, 15, 20, 25, 30 and 35oC. Three nonlinear regression models (i.e., segmented, dent-like and beta) were used for quantifying the response of germination rate to temperature. The results showed that in addition to germination percentage, the temperature has a significant impact on germination rate. Given the root mean square of errors (RMSE) of germination time, the coefficient of determination (R2), the simple linear regression coefficients a and b, and the relationship between the observed and the predicted germination rates, the best models for determination of cardinal temperatures of Secale mountanum were dent-like and beta models. Base, optimum and maximum temperatures were estimated to be about 2.70 to 3.17, 21.27 to 30.00 and 35.00 to 35.05°C, respectively for the dent-like model. However, given the high value of SE for temperature base and a negative estimate of the base temperature of the beta model, one can report the dent-like model as the right model. Therefore, by using the dent-like model and the estimated parameters, it is possible to use this model for predicting germination.
 


Fereshteh Darabi, Maryam Valipour, , Rahim Naseri, Meysam Moradi Moradi,
Volume 4, Issue 1 ((Spring and Summer) 2017)
Abstract

Unfavorable storage conditions, especially relatively high environment humidity and high storage temperature greatly affect the quality of corn seeds. The effects of temperature, environment moisture and length of storage on six maize hybrids were examined. For the purpose of investigating germination traits, total soluble proteins, leakage electrolytes and the activity of antioxidant enzymes in maize hybrids, an experiment was carried out at the Agronomy and Plant Breeding Laboratory of Ilam University in 2016. The study was conducted as two factorial experiments, adopting a completely randomized design with three replications. The first factor comprised six maize hybrids (single crosses: 703, 706, 711, 604, Mobin and 701) that were obtained from Karaj Seed Breeding and Seedling Institute, Iran. The second factor was accelerated aging test in four levels involving non-aging (control treatment), aging for 4, 8 and 12 days under 40°C temperature and 95% humidity. The results showed that mean time to germination and electrolyte leakage significantly increased with aging duration. Mean time to germination and electrolyte leakage of the hybrids 701, Mobin and 711 increased more than the other hybrids. In addition, antioxidant enzyme activity decreased significantly with an increase in the aging period. These results indicated severe damage to cell membranes and enzyme activity in these hybrids. Moreover, there was a significant and positive correlation between germination percentage and the enzyme peroxides, as compared with other antioxidant enzymes. Although antioxidant enzyme activity exhibited a significant reduction in seed deterioration, nonetheless, generally speaking, compared with other varieties, KSC 703 was more tolerant.

Highlights:
  1. The germination response of six hybrids of the maze to seed deterioration was investigated.
  2. The role of antioxidant enzymes in deteriorated seeds of maize hybrids was examined.

Goudarz Ahmadvand, Masoume Dehghan Banadaki, Javad AliMoradi, Sara Goudarzi, Sasan Ardalani,
Volume 4, Issue 2 ((Autumn & Winter) 2018)
Abstract

Salt and drought are two major environmental stresses that affect growth and development of plants. In order to study the effects of sodium chloride and polyethylene glycol (6000) on germination characteristics and early seedling growth of redroot pigweed (Amaranthus retroflexus), two completely randomized designs with 4 replications were conducted at Weed Research Laboratory of Bu-Ali Sina University, Hamedan in 2015. The treatments were salt and drought stress as osmotic potential at six levels (zero (control), -2, -4, -6, -8 and -10 bar). The results showed that when stress increased, germination percentage, germination speed, radicle and plumule length, seedling length and seedling vigor index decreased significantly (p≤ 0.05). With an increase in the intensity of salt and drought stress from zero to -10 bars, redroot pigweed seed germination reduced about 96 and 100 percent, respectively, compared with the control. The highest seedling length in both stresses was observed in the control (7.71 cm) and by increasing stress intensity to -10 bars in both salinity and drought stresses, seedling length was reduced to 1.52 cm and 0 cm, respectively. Fitting of the three-parameter logistic model provided a successful estimation of the relationship between salt and drought stress levels and germination percentage of redroot pigweed as well as germination speed. This model showed that salinity and drought stress at -3.58 and -3.75 bars caused a 50% reduction in maximum germination percentage of redroot pigweed. In addition, 50% decrease in germination speed caused by salinity and drought stress was observed in -2.58 and -2.88 bars, respectively.

 
Highlights:

  1. The germination characteristics of redroot pigweed were studied under salt and drought stresses.
  2. Drought stress reduced germination percentage of redroot pigweed.

Hossein Nastari Nasrabadi, Mehdi Moradi, Mohammad Naser Modoodi,
Volume 5, Issue 2 ((Autumn & Winter) 2019)
Abstract

DOR: 98.1000/2383-1251.1397.5. 139.10.2.1606.1610

Extended abstract
Introduction: Using of plant growth regulators is one of the methods can improve plant growth against environmental stresses such as salinity. Salicylic acid plays an important role in physiological processes regulation, including germination. Today, using of growth promoting bacteria has been increased and it causes to raise the seed vigor, uniformity, germination percentage and better seedling establishment. Growth promoting bacteria can be effect on increasing plant resistance to adverse environmental conditions by interposition in plant hormones production such as auxin, GA, cytokinins, and as well as the stabilization of nitrogen or phosphorus availability and other nutrients
Materials and Methods: This experiment was conducted as factorial in a completely randomized design with three replications. Salicylic acid factor (SA) was selected at two levels (0 and 1 mM). The bacterial treatments included Azotobacter (AZ), Azospirilum (AZP), complex of Azotobacter and Azospirillum (AZ + AZP), and without inoculation (C) and salinity treatment (S) was at five levels (0, 50, 100, 150 and 200 mM).
Results: Results showed that all treatments had no significant effect on germination percentage. Radicle and plumule length, seed vigor index and seedling fresh weight was significantly increased at 50 mM NaCl. Generally speaking, the elongation of plant organs when treated with low concentrations of salts may induce osmotic adjustment activity in the plants which may improve growth. Germination rate, Radicle and plumule length and seed vigor index were significantly increased by salicylic acid treatment. AZ and AZ+AZP increased germination parameters significantly than control. Generally germination factors were better improved by combination salicylic acid with AZ than AZP and AZ+AZP. These results could indicate the synergistic relationship between growth promoting bacteria and salicylic acid.
 Conclusion: According to the results pre-treatment of melon seeds by 1 mM salicylic acid and Azotobacter can be proposed to improve seed germination and seedling establishment under salinity stress.

 
Highlights:
  1. Effect of salinity on seed germination characteristics of melon.
  2. Effect of biofertilizer and salicylic acid on germination and seedling growth of melon under salt stress.

Hasan Teimori, Hamidreza Balouchi, Ali Moradi, Elias Soltani,
Volume 5, Issue 2 ((Autumn & Winter) 2019)
Abstract

DOR: 98.1000/2383-1251.1397.5. 105.10.2.1578.1601

Extended abstract
Introduction: Seed germination is one of the first important and complex stages in the plant life cycle and is affected by many hereditary and environmental factors. Various factors affect germination and seedling establishment. Among these factors are the characteristics of the maternal plant (nutrition, genetics), seed treatment stage at harvest time, as well as environmental factors (temperature, water potential, and ventilation and soil compaction). Also, under the influence of seed loss during storage, seed vigor, which is known as the first component of seed quality, decrease. The aim of this study was investigation of germination and biochemichal responses of the aged seed of Fenugreek to different temperature and humidity ranges.
Materials and Methods: This experiment was conducted as a factorial based on a completely randomized design with four replications in the Laboratory of Seed Science and Technology, Faculty of Agriculture, Yasouj University in 2016. The experimental treatments consisted of nine levels of temperature (5, 10, 15, 20, 25, 30, 35, 40 and 45 degrees Celsius), water potential included seven levels (zero (control), -0.2, -0.4, -0.6, -0.8, -1 and -1.2 MPa) and seed aging at two levels (no aged (control) and aged seed).
Results: In this experiment, the effect of seed aging, water potential and their interactions on each environment on germination indices (germination percentage and germination rate, length and weight vigor index) and biochemical indices (soluble sugar, proline, soluble protein and catalase enzymes) of Fenugreek seeds were significant. The results showed that in the aged seed the germination percentage and rate and seedling vigor index tended to decrease with water potential reduce in temperature lower and higher than 20 degrees Celsius, and the amount of biochemical components of the seed (soluble sugar, soluble protein, proline, and catalase enzyme) also increase.
Conclusion: In general, germination and biochemical indices of seed of Fenugreek are sensitive to water potentials, aging, and seed germination temperatures, respectively. In terms of osmotic potential decrese, the germination temperature of less than 20 ° C resulted in increased germination resistance of fenugreek seed to a more negative water potential.
 
Highlights:
  1. Study of germination and biochemical properties of fenugreek seed aged under different level of osmotic potantials and temperatures.
  2. In areas with a lower osmotic potential it is better to cultivate Fenugreek seed at temperatures below 20 °C.


Page 1 from 1     

© 2019 All Rights Reserved | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.