Search published articles

Showing 3 results for Ashraf

Hamdollah Eskandari, Ashraf Alizadeh-Amraie,
Volume 1, Issue 1 ((Spring and Summer) 2014)

A laboratory experiment was conducted to evaluate the effect of seed priming under salt and drought conditions on seed germination and early seedling development of millet. A factorial experiment (3×2×5) based on completely randomized design with three replications was employed. The first factor was the effect of seed priming (control, hydro priming and KNO3), the second factor was the effect of salt and drought stresses including NaCl and PEG 6000 and the third factor was the effect of osmotic potential levels (-0.3, -0.6, -0.9 and -1.2 MPa). Results showed that germination performance was negatively affected by decreasing osmotic potential. There was a variable germination with different stress condition, in which seeds were able to germinate at all concentration of NaCl but no significant germination was occurred at -0.6 MPa of PEG for no primed and KNO3. However, both seed priming treatments (Hydropriming and KNO3), improved seed germination performance with the clear effectiveness of Hydropriming in improving germination properties under salt and drought conditions. It was concluded that germination inhibition resulted from osmotic effect rather than salt toxicity.

En Mehrazar Ashraf, Kamal Sadat Asilan, Farid Golzardi, Shahram Nazari, Ramin Salehi,
Volume 2, Issue 2 ((Autumn & Winter) 2016)

Three separate experiments conducted to survey the response of two populations of common purslane weed collected from Karaj and Ahvaz on germination and early growth. The first experiment was based on 4 levels of flooding, including 1, 2, 4, 8 days plus non-flooding treatment as a control. Second experiment addressed the impact of various acidity levels, such as 4, 5, 6, 7, 8, 9, 10 and finally third experiment considered the influence of high temperatures of 60, 80, 100, 120, 140, 160, 180, 200, 220 centigrade on germination rate, germination percentage, radicle length and plumule length as well as fresh weight of the aforementioned population of common purslane (Karaj and Ahvaz). Analysis of variance revealed that in both weed populations, all germination indices were impressed by flooding periods, acidity levels and high temperatures. Extending the flooding periods resulted in reducing all measured parameters in both weed populations, so the growth of common people was completely inhibited less than 8 consecutive days of flooding. Germination rate and percentage improved gradually by increasing the acidity value from 4 up to 7. An adverse relation was observed between the measured parameters and temperature variations in both Karaj and Ahvaz weed population. Germination rate and percentage, radicle and plumule length, as well as the fresh weight of seedling, decreased significantly in response to increasing the oven temperature. Overall, it can be concluded that boosting our knowledge about both ecology and biology aspects of the common person can pave the way for introducing new ways in line with expanding long-term strategies, improving management systems and predicting the mode of germination and growth of this important weed.

Ashraf Alizadeh-Amraie, Abdollah Javanmard, Hamdollah Eskandari,
Volume 6, Issue 1 ((Spring and Summer) 2019)

DOR: 98.1000/2383-1251.1398. 1575.1578

Extended Abstract
Introduction: Pulses are a group of crops which are important in human nutrition and also sustainability of agronomical systems and economic advantage. Regarding optimum planting density of mung beans (40 plant m-2), more than 700 tons of certified seeds of mung bean seeds are needed all over the country, confirming the importance of the production of high quality seeds. Seed quality may be affected by different environmental conditions such as water deficit. Since intercropping can alleviate the negative effects of drought on crop growth, the hypothesis that crops can benefit from intercropping has been formulated in previous studies. Since there is no sufficient information on germination performance and seed weight of mung bean during seed growth and development in response to partial root zone irrigation and intercropping, the current experiment was aimed to evaluate the effect of partial root zone irrigation and intercropping on some quality traits of mung bean and to determine the best time of harvesting to produce high quality seeds in mung bean.
Materials and Methods: The experiment was conducted as factorial (3× 2× 5) based on RCBD with three replications. The first factor was planting pattern (including sole mung bean, inter-row maize-mung bean intercropping and within-row maize-mung bean intercropping). The second factor was irrigation method (partial root zone irrigation and conventional irrigation) and the third factor was harvest time (5-day intervals in 5 stages). Germination percentage, 1000-grain weight, root length, shoot length and seedling dry weight were determined for evaluation of seed quality.
Results: The results indicated that the interaction of cropping pattern× harvest time and cropping pattern× irrigation× harvest time had no significant effect on traits. However, the interaction of irrigation× harvest time on germination percentage, root length and seedling dry weight was significant (P≤0.01). With increasing growth and maturation of seed, germination percentage increased in both irrigation methods. Germination percentage of mung bean was reduced by partial root zone irrigation. The effect of partial root zone irrigation on germination percentage was higher at the end of seed filling period. Partial root zone irrigation resulted in the reduction of root length. The differences between conventional and partial root zone irrigation for root length at different harvest times were 4, 9, 9, 18 and 15 percent, respectively. In both irrigation methods (i.e., conventional and partial root zone irrigation) seedling dry weight increased with increasing the seed growth and maturation. However, deficit of irrigation had negative effects on seedling dry weight of mung bean. With reduced water availability, 1000-grain weight and shoot length were also reduced. 1000-grain and shoot length of mung bean in conventional irrigation were 11 and 10 percent higher than those of partial root zone irrigation, respectively.
Conclusion: Intercropping had no significant effect on seed quality of mung bean. However, deficit of irrigation reduced its seed quality. For harvesting high quality seeds in mung bean, there is a need for plants that experience no drought stress. That the time of reaching the maximum seed quality coincided with the ending of the seed filling period confirms the Harington’s hypothesis.
  1. Seed quality of mung bean during seed growth and development was evaluated.
  2. Effect of deficient irrigation induced by partial root zone irrigation on seed quality of mung bean was determined.
  3. The effect of planting pattern of mother plants on seed quality was investigated.

Page 1 from 1     

© 2020 All Rights Reserved | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.