Search published articles


Showing 8 results for Potassium

Mozhgan Maleki Narg Mousa, Hamidreza Balouchi, Mahmood Attarzadeh,
Volume 2, Issue 1 (9-2015)
Abstract

In order to evaluate the effect of priming on some germination and seedling growth characteristics of safflower (Carthamus tinctorius L.) under drought stress, an experiment was conducted base on completely randomized design with four replications at the Seed Technology Laboratory of Yasouj University, in 2011. Treatments were included of five priming levels (control or no prime, hydro priming, potassium nitrate 3% (KNO3), PEG and Urea -4 bar) as the first factor and three levels of drought stress (0, -4 and -8 bar) as the second factor. The results showed that the interactions of drought stress and seed priming on germination percentage and the germination rate was not significant. But the main impact of priming and drought stress on them was so significant at 1% probability. The highest germination percentage and germination rate (75.66% and 3.62 seed.day-1, respectively) were shown in urea priming and the lowest (52% and 2.31 seed.day-1 respectively) in the control treatment (no prime). Drought stress was caused a significant decrease in germination traits. In general, the results obtained in this study showed that treatment with urea and potassium nitrate compared with PEG improved germination and seedling growth of safflower.


Farzad Mondani, Ashkan Jalilian, Atusa Olfati,
Volume 5, Issue 1 (9-2018)
Abstract

Extended abstract
Introduction: Malva (Malva neglecta) is one of perennial plants of the Malvaceae family. One of the most important mechanisms for survival of the plants is dormancy, rest or distance in germination and growth; in this case, despite favorable conditions for germination, the seed remains at rest for an indefinite period of time. Seed dormancy is a consistent feature in some seeds, especially weed seeds to optimize distribution of germination over time. Seed dormancy has a very important role in ecological management. The cause of the physical dormancy lies in skin cells outside tier structure that is impermeable to water. In physical dormancy, the seed coat is so hard that it does not allow the embryo to grow during germination. The chemical dormancy of the plants seeds is caused by the presence of inhibitor substances in the outer shell of many fruits and seeds and may also be due to an Enamel layer that blocks the exchange of oxygen. It goes without saying that understanding the ecology of weed germination and dormancy can contribute to long-term management. Therefore, this study was conducted to determine the effects of breaking seed dormancy and the impact of chemical and mechanical treatments on the germination of the Mallow seeds.
Materials and Methods: In order to recognize the effects of chemical and mechanical treatments on breaking seed dormancy and some of the most important features of seed germination of Malva, the experiment was conducted based on a completely randomized design with 4 replications at Crop Physiology Lab, Razi University, during 2016. Treatments were distilled water (control), sulfuric acid 98% (for 2, 3 and 4 minutes), potassium nitrate 3% (for 3, 4 and 7 days), hydrogen peroxide 30% (for 2, 3 and 4 minutes) and scarification with sandpaper and prechilling (for 1, 2 and 3 weeks). Germination percentage, germination rate, length and dry weight of hypocotyl, length and dry weight of radicle, seedling total dry weight and vigor index were evaluated. Group comparisons, analysis of variance and comparison of means were run based on LSD at 5% level, using SAS software (version 9.4).
Results: The results showed that the highest and the lowest germination percentage were 82% and 5% in scarification with a chilling for 3 weeks and control treatments, respectively. The results of treatment group comparisons also showed that using scarification with a chilling had the greatest impact on seed dormancy breaking. The most hypocotyl length (34.92 mm), hypocotyl dry weight (2.60 g), seedling dry weight (3.29 g) and seed vigor index (58.13) were observed in scarification with a chilling for 3 weeks. The highest germination rate (5.21 in day), radicle length (34.92 mm) and radicle dry weight (0.85 g) also belonged to sulfuric acid 98% for 2 minutes. It seems that seed dormancy of Malva was a combination of physiological and physical dormancy, because the effectiveness of the treatments evaluated in both metabolic and physical processes brought about the increase in the seed germination percentage.
Conclusion: Out of the treatments examined and given the results of group comparisons, scarification with sandpaper and prechilling had the most effect on breaking Malva’s seed dormancy. As scarification with chilling had the main role in breaking seed dormancy, it could be said that the dormancy is physiological and factors contributing to this dormancy are the embryo, the existence of inhibiting factors or both. The results indicated that the germination of Malva (Malva neglcta) seeds mechanically scratched with scarification increased. Therefore, seed dormancy is due to hard coated seeds. The seed coat is as one physical barrier against growth of embryo or radicle that inhibits absorption of water and gas exchanges.
 
 
Highlights:
1- Investigating dormancy breaking and germination traits of neglcta species of Malva.
2- Evaluation of efficiency of different chemical and mechanical treatments in the germination traits of Malva.

Ali Asharf Mehrabi, Somayeh Hajinia,
Volume 6, Issue 1 (9-2019)
Abstract



Extended Abstract
Introduction: White Astragalus (Astragalus gossypinus Fisherr.) is one of the valuable plants for producing gum, which is of critical importance in soil conservation and the economy of the country. This plant is propagated by seed; its seeds are in the natural state of dormancy. Therefore, recognizing the factors affecting dormancy and creating optimal conditions for seed germination of this plant is necessary for the cultivation and reclamation of rangelands. This study was conducted with the aim of finding the best treatment for breaking the dormancy and improving seed germination under various chemical and physical treatments.
Materials and Methods: The experiment was carried out as a factorial based on a completely randomized design with four replications at the gene bank of cereal and legume Lab of Ilam University, 2017. The factors included two levels of scarification chemical (with and without sulfuric acid (H2SO4) for 10 minutes), three levels of stratification (control, moist chilling at +4 °C and dry chilling -20 °C), potassium nitrate in two levels (zero and 1% KNO3) and gibberellic acid in two levels (zero and 5 ppm GA3). Germination indices including germination percentage, germination rate, seedling and radicle length, seedling fresh weight and vigor index were measured.
Results: Initial assessment of vital indices in seed such as germination and primary growth showed that the simultaneous application of scarification by sulfuric acid and moist chilling at +4 °C has the most impact on removing dormancy and increasing germination percentage. The highest germination rate was observed in moist chilling at +4 °C, which was 32.19 percent more than that of the control treatment. Scarification by sulfuric acid reduced the mean germination time in moist chilling at +4 °C. Scarification by sulfuric acid increased the fresh weight of the seedling by 55.25 percent, compared with the control. Pre-treatments with potassium nitrate undre control conditions, moist chilling at +4 °C and dry chilling at -20 °C increased the fresh weight of seedlings, at 52.66, 30.94 and 17.18 percent, respectively. Application of potassium nitrate increased root length by about 60.7 percent, compared with control. The highest radicle length (78.71 mm) was obtained when the seed was treated with sulphuric acid with wet chilling at 4 ° C for two weeks, which was 30 percent higher than control. The highest seedling length (84.88 mm) was obtained in scarification with sulfuric acid, wet chilling, and potassium nitrate and gibberellic acid. The highest seed vigor index (61.85 %) was observed in the treatment of scarification with sulfuric acid under moist chilling, and pre-treatments of gibberellic acid and potassium nitrate.
Conclusions: In general, it can be concluded that seed dormancy of Astraglus gossypinus involves both physical and physiological dormancy. The best treatment for removing the dormancy of this species seems to be scarification with sulfuric acid for 10 minutes puls concentrated stratification in moist chilling at +4 °C for two weeks.
 
 
Highlights:
  1. Determination of the optimal seed dormancy techniques of white Astragalus for the purpose of increasing seed germination percentage.
  2. Comparison of the efficiency of different dormancy breaking techniques.
  3. The combined effect of sulfuric acid, chilling and priming with gibberellic acid and potassium nitrate on germination indices.

Marjan Diyanat, Pouya Sonboli-Hamedani, Fereidoon Ghasem-Khan Ghajar,
Volume 8, Issue 1 (9-2021)
Abstract

Extended Abstract
Introduction: Seed dormancy is the most important factor that prevents weed seed germination. Lack of simultaneous germination of weed seeds causes a number of problems in their control due to seed dormancy in the fields; therefore, weed seed dormancy is considered to be an undesirable trait for farmers. The aim of this study was to investigate the effect of magnetic field on seed dormancy elimination in some weed species.
Material and Methods: In order to study the effect of Magnetic field on germination and seedling growth of redroot pigweed (Amaranthus retroflexus), spring wild oat (Avena fatua) and common purslane (Portulaca oleraceae), a factorial experiment based on completely randomized design was conducted at the Ecology laboratory of Science Research Branch, Islamic Azad University in 2019. Factors consisted of dormancy breaking treatment at 8 levels (gibberellic acid 1000 mg/l for 20 minutes, gibberellic acid 2000 mg/l for 20 minutes, sulfuric acid for 5 minutes, sulfuric acid for 10 minutes, sulfuric acid for 20 minutes, nitrate potassium at 0.01 g/L, nitrate potassium at 0.05 g/L and control) and magnetic field at 4 levels (0, 25, 50 and 100 mT).
Results: Results showed that responses of three weed species to magnetic field were different. Magnetic field increased percentage of germination, fresh weight of plumule and length of plumule of redroot pigweed, so magnetic field at 100 mT was the best treatment for dormancy breaking. The highest germination percentage of wild oat was obtained in 0.01 mM potassium nitrate at 50 mT. The length plumule of wild oat increased significantly at 2000 mg/l gibberellic acid with increasing magnetic field level from zero to 25 mM. Nitrate potassium at 0.05 g/L was the best treatment for breaking the dormancy of common purslane. Magnetic field at 100 mT could increase percentage of germination of this weed.
Conclusion: In general, the results of this study showed that sulfuric acid treatment was not a suitable option for the removal of dormancy in the three weed species because of the elimination of seed embryos. Magnetic field treatment significantly increased the studied traits in all three species of redroot pigweed, spring wild oat and purslane. The interaction between dormancy breaking treatment and magnetic field was significant in many of the studied traits and the effect of dormancy breaking treatment was intensified by magnetic field. Therefore, the use of magnetic field treatment is recommended to increase the germination of these three species.
 
Highlights:
1- There is a positive and significant interaction between seed dormancy elimination treatments and magnetic field.
2- Sulfuric acid treatment is not a suitable option for breaking the dormancy of redroot pigweed, spring wild oat and purslane.

Mehrdad Mahlooji, Mehrdad Jenab,
Volume 8, Issue 1 (9-2021)
Abstract

Extended abstract
Introduction: Barley is the fourth largest cereal crop in the world and the second cereal crop in Iran in supplying food needs. Considering population growth and food shortages, it is important to look at ways to increase production. Seeds of higher quality and vigor emerge better when exposed to biotic and abiotic stresses and have stronger seedlings with higher vigor. It seems that one of the appropriate strategies for reducing or moderating the effect of stress on yield is foliar application with micronutrients which can also affect germination and vigor of the produced seeds. For this purpose, the effect of water stress and foliar application on germination characteristics and vigor of barley seeds was investigated.
 Materials and Methods: A factorial experiment was carried out based on CRD with four replications on the seeds resulted from a field experiment at Isfahan Kaboutarabad Agricultural Research Station, during the cropping year of 2018-19.  The main factors was foliar application at five levels: no foliar application(water use), zinc sulfate (0.5%), potassium sulfate (0.5%) and salicylic acid (1.5 mM), and superoxide dismutase (3 mg/liter) at the start of tillering for three times at seven day intervals and the sub-factor was genotypes was Goharan (drought tolerant), Mehr (salt-tolerant) and Armaghan (stress-sensitive). After harvesting, germination traits were evaluated.
Results: Foliar application of maternal barley plant at the late season drought stress had a significant effect on root and shoots length, root and shoot dry weight, length and weight vigor indices, allometric coefficient and germination uniformity of seed. Also among the studied cultivars in late season irrigation cut off conditions, Goharan cultivar had a better shoot and root development (seedling vigor weight index) and higher seed germination uniformity.
Conclusion: Foliar application of potassium sulfate and zinc sulfate on different barley cultivars resulted in favorable metabolic conditions in seed and due to better root development and higher dry weight than stem development and as a result, higher allometric coefficient and better establishment under late season drought stress, may provide better growth conditions under drought stress conditions.
 
Highlights:
  1. Goharan barley cultivar responds more positively to foliar application under late season drought stress conditions.
  2. Foliar application of potassium sulfate, zinc sulfate and super oxidase superoxide on Goharan cultivar maternal plant under late season drought stress condition led to the highest seedling root length, root dry weight and shoot dry weight.

Maryam Boroujerdnia, Hamed Hasanzade Khankahdani,
Volume 8, Issue 2 (3-2022)
Abstract

Extend abstract
Introduction: Guava (Psidium guajava L.) is one of the most important fruit crops of tropical and subtropical regions. Guava (Psidium guajava L.) can be propagated by seed, layering, grafting, cutting or tissue culture. Propagation by seed is used for the production of seedlings usable in breeding programs or rootstock production for grafting. Guava seeds germinate poorly and unevenly and require more time for seedling emergence. The dormancy in seeds might be due to hard seed coat and different methods are used for breaking dormancy in seeds to improve germination. The aim of this study was to evaluate efficiency of the different pretreatment on seed dormancy breaking and germination characteristics of guava.
Materials and Methods: The experiment was laid out in a completely randomized design with three replications on guava seeds in genetic and breeding laboratory of Date Palm and Tropical Fruit Research Center at the summer of 2018. Treatments consisted of distilled water (24 and 48 h), 0.5 and 1% potassium nitrate (KNO3) for 24 h, warm water (70 ° C) for 5 and 10 min, 25% and 50% sulphuric acid for 5 min, and control (non-treated). In this study, the traits of germination percentage, germination rate and mean of daily germination, seed vigour index and fresh weight and length of seedling were measured.  Data analysis was done using the SAS 9.2 software and the Duncan's test at 5% probability level was used for mean comparison.
Results: Results showed that the effect of treatments on seed germination indices (germination percentage, germination rate and mean of daily germination, seed vigour index) of guava was significant at p<0.01. The greatest germination percentage (53.1%), germination rate (6.6 seed/day) and seed vigour (2636.7) were observed in treatment of 1% potassium nitrate (KNO3) for 24 h. The lowest Mean time to germination (14 days) was obtained in distilled water for 48h. Warm water treatments at 70 °C and 25% and 50% sulfuric acid were not effective in improving seed germination compared to control. The highest seed length and weight were observed in 1% potassium nitrate and 0.5% potassium nitrate pretreatments, respectively.
Conclusions: the results of this study show that among the different treatments, pre-treatment of seeds with 1%potassium nitrate may be considered as an effective way to improve seed germination of guava. Also, pretreatment with distilled water for 48 hours is an easy, low cost and effective way to increase guava seed germination indices.

Highlights:
1- The effect of different chemical treatments on germination characteristics of guava was investigated.
2- The suitable method for seed dormancy elimination and seed germination improvement of guava was introduced.

Habibolah Moazen, Mehdi Hosseinifarahi, Azam Amiri,
Volume 8, Issue 2 (3-2022)
Abstract

Extended Abstract
Introduction: Today, seed priming is widely used to improve seed germination in a wide range of plant species. As a result of seed pre-treatment, several molecular and biochemical changes occur, including increased macromolecule synthesis, enzyme activity and formation of different metabolites. Enzymatic and metabolic activities, synthesis of proteins in quantitative and qualitative terms, and respiratory activities and, the formation of ATP for the synthesis of macromolecules, membranes, and materials required for the cell wall are increased during and after seed preparation. The aim of this study was to investigate the effect of seed priming using some hormonal and nutritional treatments as well as the type of culture medium on germination characteristics and quality of Karun tomato seedlings.
Materials and Methods: Two separate experiments were performed in two laboratory and pot stages in a completely randomized design with three replications. In the first experiment, the treatment used included seed priming at six levels (distilled water, 0.2 mM salicylic acid, 0.2 mM putrescine, 1.5% humic acid, 0.03% zinc sulfate, and 0.2 mM potassium nitrate). In the second experiment, the treatments used included the culture media type at six levels (coco peat, perlite, peat moss, 50% cocopeat + 50% perlite, 50% coco peat + 50% peat moss and 50% perlite + 50% peat-moss).
Results: Analysis of variance showed that the effect of different levels of seed priming on seed germination percentage and root length was significant. The highest germination percentage was obtained six days after cultivation in salicylic acid treatment and was equal to 97.1%. The highest shoot dry weight in peat moss treatment was 1.7 g and the lowest shoot dry weight in perlite treatment was 0.3 g. The use of peat moss treatment in comparison with coco peat increased seedling length by 31.3%.
Conclusion: Application of 0.2 mM salicylic acid, putrescine and humic acid improved seed germination compared with zinc sulfate and potassium nitrate. Also, application of peat moss and combined peat moss treatments in comparison with coco peat and perlite, increased the dry weight of roots and shoots of the plant as well as increasing the absorption of various elements.
 
Highlights:
1- Germination percentage and rate of tomato var. Karun significantly increased by salicylic acid and putrescine application (Karun cultivar)
2- Peat mass is the best culture medium for the commercial production of tomato seedlings var. Karun

Hamideh Khalaj,
Volume 10, Issue 1 (9-2023)
Abstract

Extended Abstract
Introduction: Althaea officinalis L. is one of the most important plants of the Malvaceae family which is used in traditional medicine and as a drug to treat the disorders of digestive and respiratory systems. The fresh seeds of Althaea do not have a good growth potential. This experiment was performed to evaluate the different methods of seed dormancy breaking on the improvement of A. officinalis L. seed germination.
Materials and Methods: An experiment was conducted in a completely randomized design with three replications at the agricultural laboratory of Payame Noor University Tehran, Shahriar Center in 2017. The experimental treatments included 10 treatments (control, seed coat removal, seed coat removal + gibberellic acid (500 and 1000 ppm), seed coat removal + potassium nitrate (0.1 and 0.2%), seed coat removal + sulfuric acid (30 and 60 minutes), sulfuric acid (30 and 60 minutes).
Results: The results showed that the highest germination index with averages of 433.3 was observed in seed coat removal + 30- minutes of sulfuric acid treatment. The highest germination rate (44.7 seed/day) was observed in seed coat removal + 60-minute sulfuric acid treatment. The highest germination percentage (86.6%) was observed in seed coat removal+ 0.2% potassium nitrate treatment. Also, the highest mean germination time (20.2 day) was observed in both control and seeds coat removal treatments. The highest plumule and seedling length and fresh and dry weight were observed in seed coat removal + 30 and 60- minute sulfuric acid, and seed coat removal +0.2% potassium nitrate treatment, without significant difference. The highest radicle length was obtained in seed coat removal +30- minutes sulfuric acid treatment and seed coat removal + 0.2% potassium nitrate treatments.
Conclusion: Since all three sulfuric acid, potassium nitrate and gibberellic acid treatment along with seed coat removal treatment significantly affect the measured traits compared with control. It may be suggested that A. officinalis L. seed has a type of physical and physiological dormancy and seed dormancy breaking treatments (especially 30- minutes sulfuric acid) can be used to increase germination the fresh seeds of this plant.

Highlights:
  1. In A. officinalis plant, removal of seed coat using chemical treatments is very effective in applying seed dormancy treatments.
 Development of A. officinalis seed cultivation and propagation is possible by applying seed dormancy breaking methods.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.