Search published articles


Showing 7 results for Storage

Leila Yari, Shahla Hashemi, Farshid Hasani,
Volume 1, Issue 1 (5-2014)
Abstract

The cultivation of sunflower (Helianthus annuus L.) has significantly increased in recent years, mainly due to the quality of its oil, which is useful for the human consumption and industrial purposes. In order to investigate the effect of different seed storage temperatures on seed quality of two sunflower cultivars (Euorfluor and Rcord), seeds were exposed to three storage temperatures (5, 20 and 20-30C°) for four months. Experimental units were arranged factorial manner in a completely randomized design with four replications. The effect of storage under 20C° was more effective in maintaining the vigor of sunflower seeds. The effect of storage at 5C° culminated in damage of vigor of sunflower seeds by increasing electrical conductivity (EC) and mean germination time. The effect of storage at 20-30C° (alternative temperature) brought about seedling growth by comparing with other treatments. This study indicated that best results for germination and vigor of sunflower seeds found for the seed of Euorflour cultivar in comparison with to Record cultivar under seeds storage temperature.

Saman Sheidaei, Hossein Heidari Sharif Abad, Aidin Hamidi, Ghorban Nour Mohammadi, Ali Moghaddam,
Volume 2, Issue 2 (2-2016)
Abstract

In order to assess seed deterioration of soybean at Ardebil province, this study was conducted as a factorial experiment based on randomized complete block design in 2014. The treatments consisted of germination ability, seed moisture content and seed storing conditions. Germination ability treatment was concluded of three germination levels: 80%, 85% and 90%. Also, three rates of seed moisture content including 10%, 12% and 14%; and two seed storing conditions including seed storage of Moghan and controlled storage were considered as second and third treatments. The results indicated that seed quality significantly reduced by increasing the seed moisture content up to 14% and this moisture content was determined as inappropriate moisture for soybean seed storage. Seeds with high moisture content showed significantly lower normal seedlings percent, germination rate and seedling vigor indices. However, there was no significant difference between 12% and 10% seed moisture contents, so it can be concluded that 12% seed moisture content is proper moisture for soybean seed storage. According to the results, enhancement of seed moisture content more than 12% will result in more accelerated deterioration of soybean seed, in a way that seeds with higher moisture content, especially at inappropriate seed storage conditions will lose their quality and will cause yield reduction at field due to low plant density aroused from inadequate seedling emergence.


Effat Ghaviazm, Mohammad Sedghi, Raouf Seyed Sharifi,
Volume 2, Issue 2 (2-2016)
Abstract

Marigold (Calendula officinalis) is a medicinal plant belonging to the Asteraceae family, which seems necessary the review of its various features especially the improvement of reproduction in order to the development of vegetation and extraction of raw pharmaceutics materials. In order to study the effects of seed hardening on the quality of seeds harvested from different positions of inflorescence on the storability of pot marigold, an experiment conducted at the University of Mohaghegh Ardabili in 2011. Seeds hardened before planting with CaCl2 2% and distilled water. At harvest, the seeds collected from both inner and outer regions of the inflorescence from storage experiments in the laboratory. Harvested seeds stored for six months at 40°C. Then an experiment conducted as factorial based on a completely randomizes design with four replications at the laboratory. Results showed that the highest germination percentage (96%), rate (3.91 day-1), radicle length (5.71 cm) and seed residual dry weight (0.061 g) were related to outer positioned seeds. The highest plumule length (4.79 cm) and seedling dry weight (0.016 g) obtained from outer seeds hardened with distilled water. In conclusion, for best stability results of pot marigold seeds, it is recommended to harden seeds before planting with water and harvest outer seeds from the inflorescence.

<<


Mehdi Shaban, Farshid Ghaderifar, Hamidreza Sadeghipour, Ahad Yamchi,
Volume 3, Issue 2 (2-2017)
Abstract

This study was conducted to evaluate the effects of accelerated aging and natural storage on seed germination and seedling heterotrophic growth of chickpea in Gorgan University of Agricultural Sciences and Natural Resources in 2014. The experiment was carried out, adopting a completely randomized design with four replications. Treatments were 8 aging levels (i.e., 2 years, and 4 years natural storage; 1, 2, 3, 4, 5 days of accelerated aging and a control). The results showed that the effect of aging treatment on all the traits was significant. Reduction of germination percentage, germination rate, root and shoot length seed vigor index and seedling dry weight of 4 and 5 accelerated aging days was higher than 2 and 4 natural storage years. The electrical conductivity of seed lots increased by an increase in accelerated aging to 4 and 5 days, which was higher than 2 and 4 natural storage years. This is due to incapability of a membrane to keep its permeability, which is the result of the higher sensitivity of seeds to accelerated aging. Reduction of the rate and efficiency of reserves used and also dynamic reserves in natural storage was lower than 4 and 5 accelerated aging days. However, maximum rate and efficiency of reserves used and also dynamic reserves were obtained at 2 accelerated aging days. This could be due to increase in repair reaction rates under these conditions and activation of hydrolytic enzymes in seeds. Finally, the results of the present study revealed that damages to chickpea seed at 4 and 5 accelerated aging days are more than 2 and 4 natural storage years, which leads to the reduction of germination percentage and rate.
 


Saman Sheidaei, Aidin Hamidi, Hossein Sadeghi, Bita Oskouei, Leila Zare,
Volume 6, Issue 1 (9-2019)
Abstract



Extended Abstract
Introduction: Understanding the complex characteristics that control the life span of the seed has ecological, agricultural and economic importance. Inappropriate storage conditions after harvesting destroy a large part of annual yield partly due to microbial activity in the storage. Damage from storage fungi varies based on the climatic conditions, crops and storage facilities. This study was carried out to investigate the effect of storage conditions and initial seed moisture content on the growth of storage fungi and also the relationship between the degree of contamination with fungi and the quality and biochemical changes of the seeds.
Materials and Methods: The present study was carried out as a factorial experiment based on a completely randomized design to assess the impact of storage fungi on soybean seed deterioration at different storage conditions. The treatment included three degrees of initial seed moisture content including low moisture content (10%), medium moisture content (12%) and high moisture content (14%) as the first factor. Moreover, two storage conditions including the seed storage in Moghan and controlled seed storage in Seed and Plant Certification and Registration Institute were considered as the second factor. Soybean seeds of Williams's cultivar were investigated for the infection of Aspergillus flavus, Aspergillus niger, Fusarium and Penicillium fungi and also related biochemical traits and seed quality such as germination percent, seedling vigor index, soluble sugar and total protein.
Results: The results of this experiment showed that the increase of the seed moisture content by 14% can significantly decrease the seed quality. Therefore, the seed moisture content of 14% was identified as unsuitable moisture for the storage of soybean seeds. In addition, the infection with storage fungi has a direct relationship with the degree of seed moisture and seeds with high moisture content are rapidly attacked by the storage fungi which can decrease seed quality and viability. Moreover, the Aspergillus niger infection increased from 27.5 to 43.75 and the germination percent decreased from 52.5 to 23 percent in seeds with a moisture content of 14% in Moghan storage, as compared with the controlled storage. Furthermore, this study showed that when the percentage of storage fungi increases, the soybean seed deterioration increases. Studying the biochemical changes of deteriorated seeds during the storage showed that as the aging of the seeds increases, soluble sugars and protein percentage decrease. The amounts of soluble sugars and total protein of the seed were significantly lower in seeds maintained under unsuitable conditions. Furthermore, the content of soluble sugars and total protein decreased significantly by the increase of the seed moisture, which resulted in the increase in seed deterioration.
Conclusions: Based on the obtained results, initial seed moisture and storage conditions are two important determinants of fungi infestation during storage, which can affect the content of soluble sugars and total protein causing seed deterioration, seed vigor and viability. It can be concluded that the soybean seed moisture content of 12%, which is the standard moisture content of soybean seed production in Iran, is regarded as suitable moisture for seed storage.
 
 
Highlights:
  1. Introduction of proper storage conditions and initial seed moisture in order to decrease fungal damage and soybean seed deterioration.
  2. Determination of different fungal damages during the storage of soybean seeds.
  3. Determination of relationship between the degree of soybean seed infection of storage fungi and the seed’s quality, its amount of protein and soluble sugars.

Mohsen Malek, Farshid Ghaderi-Far, Benjamin Torabi, Hamid Reza Sadeghipour,
Volume 6, Issue 2 (3-2020)
Abstract



Extended Abstract
Introduction: Priming is one of the most commonly used seed enhancement techniques. Events such as increased synthesis of nucleic acids, activation of repair processes, increased respiratory activity, and improved antioxidant capacity during priming lead to advanced metabolism in seeds. The most important effects of priming include increased percentage, speed and uniformity of germination and emergence. However, the longevity of primed seeds in storage is the major concern for researchers as it restricts widespread use of this technique. Some researchers believe that priming reduces the storage capacity of seeds, while others have reported increased seed shelf life after using priming treatments. Therefore, this study sought to investigate the effects of priming on the storage capacity of the seeds of canola cultivars under different storage conditions.
Material and Methods: In this study, the effects of priming on the shelf life of seeds of three canola cultivars including Dk-xpower, Traper and Hayola50 were investigated. For this purpose, the seeds were first treated with hydropriming and osmopriming methods. Then primed and control seeds with 6, 9, 12 and 15% moisture content were stored for 8 months at 15, 25, 35 and 45 °C. Sampling from different seed treatments was carried out at intervals of 1 to 30 days to assess germination. Finally, by fitting a three-parameter logistic model to cumulative germination data versus the day after storage, the time to germination loss to 50% was calculated and used to compare seed storage behavior between the treatments.
Results: The results showed that the storage behavior of canola seed varies greatly depending on the cultivar, and each cultivar showed a distinct behavior. Priming effects on the shelf life of seeds were different depending on the storage conditions, cultivars and also the priming methods. Comparison of the effects of priming on the seeds’ shelf life under different storage conditions showed that priming treatments were more efficient under higher seed moisture content and storage temperatures than those with lower seed moisture content and storage temperatures. In addition, priming treatments in Dk-xpower cultivar often increased the seeds’ shelf life. However, in the Traper and Hayola 50 cultivars, hydropriming often improved the seeds’ shelf life, and in contrast to osmopriming, it led to a decrease in the shelf life of the seeds.
Conclusion: Based on the results of this study, it was shown that priming effects on canola seed viability can be a function of various factors such as cultivar, storage conditions, and also the type of priming treatment. Moreover, in this study, hydropriming often increased seed longevity whereas osmopriming often increased the deterioration rate and reduced seed longevity.
 
 
Highlights:
  1. Seed storage behavior of canola cultivars was compared under natural storage conditions.
  2. Priming effects on seed longevity of canola cultivars was investigated under different storage conditions.

Mohsen Malek, Farshid Ghaderi-Far, Benjamin Torabi, Hamidreza Sadeghipour,
Volume 7, Issue 1 (9-2020)
Abstract



Extended Abstract
Introduction: Seeds, like other materials, are hygroscopic and exchange moisture with their surroundings. The changes in the moisture of seeds during storage depend on their hygroscopic nature and this feature plays an important role in determining the seed quality and longevity. Furthermore, studying the hygroscopic characteristics if seeds can be useful in seed storage studies as well as in commercial applications such as drying and seeds processing. Therefore, in this study, the relationship between seed moisture content and relative humidity in seed of rapeseed cultivars was studied.
Material and Methods: In this study, the relationship between the ambient relative humidity and seed moisture content of three rapeseed cultivars at 10, 20 and 30 °C was investigated using hygroscopic equilibrium curves. Therefore, water desorption and absorption curves were studied separately. Water absorption and desorption curves were obtained by drying the seeds at 1% relative humidity and seed hydration at 100% relative humidity, respectively, followed by transferring the seeds to different relative humidities at different temperatures and finally determining the equilibrium moisture content of the seeds. It should be noted that glycerol and sulfuric acid solutions were used to creation different relative humidity. Finally, the relationship between seeds moisture content against the relative humidity was quantified by fitting the D’Arcy-Watt equation.
Results: The results indicated that the seeds moisture content varied in cultivars and temperatures at different relative humidities. Also, there was a difference between water desorption and absorption curves in all cultivars and temperatures; desorption curves were generally higher than water absorption curves. The greatest difference among the cultivars regarding seed moisture content was observed at 100% relative humidity, and this difference was less severe at lower relative humidities. Also, the highest seed moisture content of rapeseed cultivars was observed at 20 °C and 100% relative humidity, and the lowest seed moisture content was recorded at 30 °C and 1% relative humidity.
Conclusions: According to the results, it was found that the relationship between seed moisture content and relative humidity followed a sigmoidal function, and this relationship would also vary depending on cultivar and temperature. There was also a difference between the adsorption and desorption curves, which is called "hysteresis", and showed that the seed moisture content at a constant relative humidity was generally higher in the state of dehydration compared with that in the state of hydration. Due to this event, desorption curve is situated higher than the absorption curve.

Highlights:
  1. Response to hygroscopic equilibrium curves in seeds of different rapeseed cultivars was compared.
  2. Sulfuric acid and glycerol solutions were used to create different relative humidity.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.