Search published articles


Showing 10 results for Seed Dormancy

Amin Salehi, Asad Masumiasl, Ali Moradi,
Volume 2, Issue 1 (9-2015)
Abstract

Bilhar or Mountain Kandall (Dorema aucheri) belongs to Apiacea family that contains flavonoid and coumarine compounds. Since propagation of this plant in natural habitats occurs through seed and due to deep dormancy, the identification of different seed dormancy breaking methods is necessary for the preservation of this species. In this respect, different methods, including chilling, washing and gibberellic acid was studied, on the seeds gathered from Kohgiloyeh and Boyerahmad province. For this reason, a factorial experiment with three factors was done based on a completely randomized design in three replications, in the faculty of agriculture, Yasouj University, in 2012. Experimental factors were included, chilling period (stratification periods of 3 and 4 weeks), gibberellic acid (zero and 1500 ppm) and washing (washing with distilled water and non-washable). Results showed that 4 weeks chilling treatment had maximum germination percentage and germination rate and seedling vigor. Also, maximum root and shoot dry weight were obtained from the seeds of this treatment. Whereas, double and triple interaction effects for germination percentage, epicotyl and hypocotyl length were not significant. Germination percentage was better in 4 weeks prechilled seed than 3 weeks. Obtained results from this research showed that Bilhar seeds have the physiological dormancy.


Zaynab Taghinezad, Massoud Dehdari, Amin Mirshekari, Hossain Zainali,
Volume 3, Issue 1 (8-2016)
Abstract

Medicinal barberry plants, belong to Berberidaceae family. Seeds of barberry have long period dormancy. Therefore, overcome to seed dormancy and increasing germination rate of seeds due to different methods will be useful. In this regard, two separate experiments were designed. In the first experiment, effect of different levels of Gibberellic acid (0, 600 and 900 mg.l-1 at 8˚C) and temperatures (25 (control), 10 and 5 °C at 50 days) in a factorial experiment based on the completely randomized design with three replications and in the second experiment, effect of different nutrition concentrations of MS medium (full strength MS, 1/2MS and 1/4 MS) in a completely randomized design with three replications on embryo culture of four native species of barberry (Berberis integrima, B. vulgaris, B. crataegina and B. orthootrys) were investigated. Based on the results obtained from the first experiment, chilling treated seeds showed the greatest effect (88%) on seed germination in comparison with gibberellic acid treatment. The results of the second experiment showed that the best MS concentration for embryo culture was full strength MS medium with%100 seed germination in four above mentioned barberry species after 2-3 days. In general, the best method to overcome barberry seed dormancy was an embryo culture in full-strength MS nutrition.


Ahmad Nowruzian, Majid Masoumian, Mohammad Ali Ebrahimi, Gholam Reza Bakhshi Khaniki,
Volume 3, Issue 2 (2-2017)
Abstract

Asafetida (Ferula assa- foetida L.) is an important medicinal plant belonging to Apiaceae family and has long dormancy. In this research, vernalization, washing time, GA3, medium strength, harvesting time and interaction of these treatments were studied to optimize condition of germination. The results showed that vernalization at 4-5°C for two weeks increased germination by 50%, as compared with the control. Maximum and minimum germinations were obtained for 6 and 2 hours’ washing, which was 42% and 20.47%, respectively. Germination of Ferula was increased (41.5%) by using 10 mg/l of GA3, as compared with the control. In addition, using half strength MS media led to a 25% increase in germination. Moreover, germination mean increased by applying these treatments to one-year-old seeds, in comparison with fresh ones (61% and 36%, respectively). By running factorial experiments in the CRD, the best combination of treatments which could significantly increase germination was a combination of vernalization (4-5°C for two weeks), half strength MS media, GA3 (10 mg/l) and washing time (6h). Given the results of the study, for the purpose of breaking the dormancy of Asafetida, it is suggested that use is made of one-year-old seeds, and half strength MS media, along with right combinations of vernalization, washing time and GA3.
 


Mostafa Alinaghizadeh, Mohammad Khajeh-Hosseini, Seyed Ahmad Hosseini, Mohammad Hasan Rashed Mohasel,
Volume 3, Issue 2 (2-2017)
Abstract

In order to study the seed germination behavior and dormancy breaking methods of three weed species (i.e., Chenopodium album, Convolvulus arvensis and Setariaviridis) of pistachio orchards in Rafsanjan, Iran, three separate factorial experiments (with 2 factors) were conducted based on a completely randomized design with four replications, at the Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Iran, in 2014. Weed seeds were collected from five different regions of Rafsanjan, such as Markazi, Anar, Koshkoiyeh, Kabotarkhan and Nogh. Dormancy breaking treatments for Chenopodium album involved distilled water (control), KNO3 (at 500 and 1000 ppm), chemical scarification by sulfuric acid (for 5 and 10 min), and cold stratification (for 1, 3 and 5 weeks). Treatments for Convolvulus arvensis involved distilled water (control), scarification by sandpaper, chemical scarification by sulfuric acid (20 and 30 min), and boiling water (for 15 and 30 min). Treatments for Setaria viridis involved distilled water (control), gibberellic acid (250, 500 and 1000 ppm), KNO3 (500 and 1000 ppm), and cold stratification (for 1, 3 and 5 weeks). The results showed that seed germination percentage (SGP) and mean germination time (MGT) of three weed species were significantly different among weed populations and dormancy breaking methods. For Chenopodium album, cold stratification of 5 weeks resulted in highest SGP (97%) in Nogh population. For Convolvulus arvensis and Setaria viridis, the highest SGP was obtained after scarification by sandpaper (98% in Kabotarkhan population) and using 1000 ppm gibberellic acid (60% in Kabotarkhan population), respectively. In addition, increasing the weight of 1000 seeds in the three weed species in question increased SGP.
 
 


Masume Hematifar, Ali Tehranifar, Hasan Akbari Bishe, Bahram Abedi,
Volume 4, Issue 2 (3-2018)
Abstract

Given the medicinal and ornamental properties of Hawthorn (Crataegus spp.), and given that there are some problems in its propagation, which is due to the hard cover of the seeds and immature embryo, working out techniques that can facilitate the process of seeds’ germination is of great import. Thus, the present study sought to identify the best method for the purpose of breaking the seed dormancy of 8 species of native hawthorn of Iran. The study was carried out as factorial with a completely randomized design and had three replications. The first, second and third factors were, respectively species of Hawthorn in eight levels, sulfuric acid in three levels (half and an hour versus non-treated (control) and chilling treatment in three levels (90, 105 and 120 days, respectively). The results showed that the highest percentage of germination (32%) and germination rate (9.1 day-1) were obtained under the interaction of sulfuric acid treatment for one hour, followed by a 120-day chilling period in C.turkestanica, which had a significant difference with other treatments. It is concluded that hawthorn seeds have deep endocarp and physiological dormancy. The interaction of Sulfuric acid treatment and moist chilling play an important role in increasing the percentage and speed of germination of Hawthorn seeds.

Highlights:

  1.  Achieving the best way to break the dormancy of Hawthorn seeds in different species and genotypes.
  2. Shortening the seeds’ germination time.

Vaghef Enayati, Ezatollah Esfandiari, Alireza Pourmohammad, Kamal Haj Mohammadnia Ghalibaf,
Volume 5, Issue 2 (3-2019)
Abstract



Extended Abstract
Introduction: Weeds, as the most important biological stress, reduce the efficiency of water use, waste of food, shading and secretion of toxic substances, leads to a 10 to 100 percent reduction in crop yields. The first step of the weed control understands the biology and life cycle of the weed particularly seed Eco physiological characteristics. Dormancy in weed seeds, including Redroot Pigweed seeds, is common. So, due to the importance of dormancy breaking and germination studies of weed seeds, the present study was designed to identify the methods for dormancy breaking and the germination of Redroot Pigweed seeds.
Materials and Methods: This research started in autumn 2013 by collecting Redroot Pigweed seeds from fields of Alajujeh village, Khoda Afrin County, East Azerbaijan Province, and then it was carried out at the Laboratory of the Faculty of Agriculture of the University of Maragheh in 2014 and 2015. For data analysis, the GenStat 12.1 program was used and the Duncan test was used at 5% probability level to compare the averages. Excel 2013 was also employed for drawing the diagrams.
Results and discussion: Analysis of variance demonstrated that the effect of treatments on germination percentage and germination rate in Redroot Pigweed seeds at 1% probability level and the mean germination time at 5% probability level was significant. The results showed that among studied treatments, seeds holding for 18 months were most efficient seeds dormancy breaking at Redroot Pigweed. So that the highest germination percentage (92%), germination rate (29.18 seed/day) and lowest the mean germination (4.2 day) time were obtained in seeds holding treatment. Pre-chilling treatment also had significant effects in stimulating germination. As regards treatments of seed holding in low temperature and Pre-chilling accelerate the germination process and increase germination percentage, so, having precise information of these traits enables to study, a better management and control of this troublesome weed.
Conclusions: In general, the results of this study show that among the treatments, holding seeds for 18 months at 6 ° C is the best method for solving Redroot Pigweed seeds weeds.

 
Highlights:
1- Seed holding in low temperature and Pre-chilling accelerates the germination process.
2- Seed holding in low temperature increases germination percentage.


Vahid Sayedena, Babak Pilehvar, Kambiz Abrari-Vajari, Mehrdad Zarafshar, Hamid Reza Eisvand,
Volume 6, Issue 1 (9-2019)
Abstract



Extended Abstract
Introduction: Production of nanoparticles and their use are on the rise in different areas of plant science. However, in spite of their increasing production, there is limited information about their effects on plant biology. In the current study, the potential of TiO2 nanoparticles was investigated for the purpose of improving seed germination of Sorbus luristanica and then subsequent effects of nanoparticles on the growth and biomass of the plants were determined.
Materials and Methods: Seeds of S. luristanica were collected from its natural stands. The seeds were primed with different concentrations of 0, 75, 150, 250, 350 and 500 TiO2 nanoparticles miligeram per liter for 24 h. The treated seeds were placed in wet sand at room temperature for 2 weeks and then in cold for 3 months. The expriment was set as a completely randimized design with 4 replications. Aftre 3 months of stratification in moistened sand, the stratified seeds were put in the germinator and with the appearance of seed germination signs, germination data were recorded daily during 22 days. At the end of the seed germination experiment, some germination parameters such as seed germination percentage, seed vigority and mean time to germination were calculated. Moreover, some growth and biomass parameters including leaf number, plant height and dry and fresh biomass of leaf, stem as well as roots were measured. In addition, scaning electron microscopic (SEM) was used for observation of presence and adhesiveness of TiO2 nanoparticles on the seed coat.
Results: Based on the results, all the germination parametres including seed germination percentage, seed vigoroty and mean germination time were improved by the TiO2 nanoparticles treatments. In addition, 500 mg.L-1 treatment considerably improved seed germination characteristics. The peresence of TiO2 nanoparticles on the treated seeds and lack of the nanomatreials on the conrtol seeds were obsereved by scaning electron microscopic pictures. The One-way ANOVA showed that 75 mg.L-1 treatment was more succesful for improving the grwoth (such as shoot length) and biomass production (fresh and dry biomass of leaf, stem and root and total biomass as well).  
Conclusion: It can be concluded that priming of the seeds of this species with different concentrations of TiO2 nanoparticles leads to improvement of seed germination and growth and biomass parameters. However, the patterns of effects were different in each phase. Therefore, the objectives should be formulated first and then the best concentration should be chosen. It seems that with appropriate concentrations, nanoparticles can be useful for breaking seed dormancy and production of the species. Given the promising resutls of 150 mg.L-1 treatment, it can represent a successful treatment for breaking seed dormancy and seedling production of S. luristanica.
 
 
Highlights:
1- Study of seed germination of Sorbus luristanica for the first time
2- Using Nano-materials and their potentials in breaking seed dormancy and improving the species germination
3- Using SEM in order to study presence and adhesiveness of nanoparticles on the seed coat
Akram Rostamipoor, Ali Mordai, Hamidreza Eisvand,
Volume 6, Issue 2 (3-2020)
Abstract



Extended Abstract
 Introduction: Seed dormancy, as a technique to avoid environmental stress, is important in preserving plant species and could be of various types including physiological, physical, morphological and morph-physiological dormancy. Seed testa hardness is one of the main causes of dormancy in leguminous family plants. A common method for breaking seed dormancy in leguminous plants is the use of scarification treatments. Given that oxygen deficiency is a factor that induces dormancy, scarification treatments through acceleration of gas exchanges, especially oxygen and carbon dioxide, can reduce seed dormancy and finally increase germination percentages. In addition, priming with gibberellic acid can help dormancy breaking in plant species that have physiological dormancy, finally leading to germination. Therefore, the present study investigated seed dormancy and germination to find the most appropriate treatment for the elimination of seed dormancy in three ecotypes of Astragalus cyclophyllus.
Materials and Methods: A factorial experiment based on a completely randomized design with three replications was carried out at Agriculture Laboratory of Lorestan University in 2013. The first factor was three ecotypes of Astragalus Semirom, Damavand and Zanjan, and the second factor was seed dormancy breaking treatments. The applied treatments were: control, (mechanical scarification plus chilling time with 10, 20 and 30 days prechilling at 4°C, mechanical scarification + gibberellic acid at concentrations of 400 and 500 ppm for 48 hours, scarification with sulfuric acid 96% for 2 and 4 min, mechanical scarification and 2% potassium nitrate for 72 h, mechanical scarification and gibberellic acid 400 ppm for 48 h and 20 days prechilling. The measured indices included germination percentage, mean germination time, seedling length, seedling fresh weight, seedling dry weight and alpha-amylase activity.
Results: The results showed that the interactions between seed dormancy breaking treatments and ecotype were significant for all the traits. Based on the results of mean comparison, Damavand ecotype exhibited better performance in terms of most of the traits studied, as compared with Semirom and Zanjan ecotypes. Compared with the treatments applied, mechanical scarification plus gibberellic acid 400 ppm was more effective in germination parameters and seedling vigor index. Mechanical scarification and gibberellic acid 400 ppm for 48 h along with 20 days prechilling increased total germination percentage by an average of 67.68% in Semirom ecotype and was more effective in increasing the activity of α-amylase enzyme.
Conclusion: It seems that seed dormancy of Astragalus cyclophyllus is not of physiological type and increased germination can be due to mechanical scarification in physical dormancy breaking and priming effect of prechilling and gibberellic acid.
 
 
Highlights:

  1. The effect of different dormancy breaking treatments on seed germination was investigated.
  2. Alpha-amylase activity of Astragalus Seed increased under dormancy breaking treatments.

Kamran Alimardani, Amin Salehi, Mohsen Movahhedi Dehnavi, Ali Moradi,
Volume 8, Issue 2 (3-2022)
Abstract

Extended Abstract
Introduction: Schrophularia striata is one of the medicinal plants of the Scrophulariaceae family and contains phenolic compounds. Locals have traditionally used this herbal medicine to treat infections caused by wounds, gastrointestinal diseases, and eye diseases. Due to excessive consumption by indigenous people and climate change, especially increasing temperature, the cold required to eliminate seed dormancy is not presently available and its germination and growth has decreased. Therefore, this plant is at the risk of extinction. Since this plant is propagated in natural habitats through seed and due to deep seed dormancy, evaluation of different seed dormancy methods is necessary for conservation and domestication of this species. In this study, suitable methods to eliminate seed dormancy of this plant using chilling and gibberellic acid treatments were studied on the seeds collected from different habitats of Ilam province.
Materials and Methods: To investigate the effect of using chilling and gibberellic acid on Schrophularia striata dormancy, a split plot factorial experiment based on completely randomized design with four replications was conducted at the seed laboratory of Yasouj University in 2018. The first factor included the duration of moist chilling period (0, 4, 8, 12 and 16 weeks), the second factor included gibberellic acid (0, 300 and 600 mg/L) and the third factor included five habitats (Ilam, Ivan, Mehran, Abadan and Dehloran).
Results: The results showed that the 16-week Chilling and zero gibberellic acid treatments had the highest germination percentage in all habitats, as the percentage of germination in Mehran, Ivan, Ilam, Abadan and Dehloran habitats was 66, 50, 36, 30 and 25%, respectively. Also, the highest germination rate was observed in all habitats at 16 weeks chilling and zero mg/L gibberellic acid concentration. The highest germination uniformity was obtained at 16 and 12 weeks of chilling.
Conclusions: Chilling period duration was effective on germination percentage and rate and with increasing chilling period, germination percentage and rate increased. This indicates that the seeds studied had some degree of physiological dormancy, and the seed of higher altitude habitats required longer chilling periods than those of the lower ones for germination. Also, according to the results of this experiment, chilling periods above 16 weeks should be used to increase germination percentage.

Highlights:
1- Chilling period duration in the presence of gibberellic acid was the most important factor for the elimination of Schrophularia striata seed Dormancy and increased germination.
2- With increasing altitude and in the same chilling period duration, habitats with lower altitude had higher germination percentage and rate

Hakimeh Rahimi, Mohsen Malek, Farshid Ghaderi-Far,
Volume 8, Issue 2 (3-2022)
Abstract

Extended Abstract
Introduction: Seeds need successful germination at the optimal time and conditions to survive. Sometimes, even in the best environmental and genetic conditions of the seed, they do not germinate or germinate with a delay, which are called dormant seeds. Seed dormancy can have positive effects on avoiding adverse conditions and ensuring survival in the environment. However, dormancy in crop plants reduces emergence and yield by preventing germination. A combination of environmental and seed genetic factors are involved in seed dormancy formation. In general, seed dormancy includes: physical dormancy, physiological dormancy, morphological dormancy, morphophysiological dormancy and combinational dormancy, and physical / chemical scarification treatments, hot and cold stratification, leaching, hormonal treatments, after-ripening, light and combination treatments can be used to eliminate dormancy depending on its type. Therefore, in this study, using domestic studies conducted in the field of seed dormancy in different plant species, identification of dormancy in different plant species and its types have been discussed, and general and practical information in this regard has been provided.
Materials and Methods: In this study, 168 reports published on 250 plant species in the last 20 years, which were published in the seed dormancy of medicinal plants, weeds, rangelands, ornamentals and crops were investigated. Then, the percentage of plants studied and their families, as well as the share of different types of seed dormancy and appropriate treatments to for its eliminate were determined.
Results: Among the plant species studied, the most freuqent type of dormancy was related to physiological dormancy (50%), followed by physical dormancy, combinational dormancy, morphophysiological dormancy and the lowest share of dormancy in the studied plant species was related to morphological dormancy (1.61%). The most effective treatments to eliminate physiological dormancy were the use of cold stratification, gibberellic acid, and potassium nitrate. Also, the most effective treatments for the removal of physical dormancy were the use of physical / mechanical scarification treatments, chemical scarification and potassium nitrate treatment. According to the results, temperature treatments and then gibberellic acid and potassium nitrate treatments are recommendedt eliminate morphological dormancy. To eliminate morphophysiological dormancy, it is recommended to use treatments to maturate differentiated small or undifferentiated seeds (removal of morphological dormancy) as well as treatments to counteract the germination inhibitory factors or to compensate the were applied the most to eliminate morphophysiological dormancy.
Conclusion: By identifying the type of dormancy and applying the appropriate treatments, the germination of economical and valuable plants can be improved.

Highlights:
1- Dormancy types in native plant species of Iran through the information of domestic studies was investigated and a comprehensive report on seed dormancy was presented for the first time.
2- General and practical information about seed dormancy, effective factors and methods of dormancy elimination was reviewed in a practical way.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.