Search published articles


Showing 9 results for Salicylic Acid

Sayyed Ali Tabatabaei, Omid Ansari,
Volume 3, Issue 1 (8-2016)
Abstract

The objective of this research was to evaluate the effect of salicylic acid and gibberellic acid on germination characteristics and changes of proline, protein and catalase activity of Brassica napus seedlings under Cu(SO4) stress. The experimental design was factorial with complete randomized design as a base design with 3 replications. The first factor was 4 levels of Cu(SO4) stress (0, 10, 20 and 30 mg/l), and the second factor was 4 levels of priming with salicylic acid and gibberellic acid 50 mg/l, hydro prime and control (non-priming). Results showed that with increasing levels of Cu(SO4) stress, germination characteristics (germination percentage, germination rate, normal seedling percentage, seedling length and seed vigor index) reduced and using of salicylic acid, gibberellic acid and hydro prime increased germination characteristics. The highest germination percentage (94%), germination rate (30.75 seed per day), normal seedling percentage (86.17%) seedling length (10.53 cm) and seed vigor index (9.08) were attained from priming by salicylic acid 50 ppm under non-stress conditions. Cu(SO4) stress increased proline (35%) and catalase (37%) activity but reduced protein (65%) and priming increased proline, protein and catalase activity as compared to unprimed under stress and control conditions. In this study, using priming treatment salicylic acid had usually higher germination characteristics and catalase activity, total proteins and proline content in comparison with untreated or control seeds.


Shirin Taghi Zoghi , Elias Soltani , Iraj Alahdadi , Reza Sadeghi ,
Volume 4, Issue 2 (3-2018)
Abstract

This study was conducted to study the effects of different priming methods on germination rate and percentage under salinity stress and to determine the stability of primed seeds. In order to accomplish this, three different experiments were conducted separately, including the experiment of water uptake, the experiment of salinity stress, and the experiment of storability of primed seeds. Priming treatments were five levels of control (unprimed), hydropriming (Hyd), priming with humic acid (HA), priming with salicylic acid (SA) and priming with gibberellic acid (GA). Salinity stresses were four levels of 0, 4, 8 and 12 ds/m of NaCl. The stability of prime seeds was investigated over a period of 226 days after priming. The results of water uptake showed that rapeseeds entered into the third phase of water uptake after 18 hours of hydration. The results of the salinity experiment showed that salinity levels of 12 and 0 ds/m had the lowest (74.3 %) and highest (83 %) germination percentage, respectively. In terms of germination rate, there were significant differences between GA (0.034 h-1), HA (0.036 h-1) and Hyd (0.036 h-1) with C (0.019 h-1) and SA (0.027 h-1). Generally speaking, primed seeds germinated better than control seeds at all levels of salinity. The storability of primed seeds and control seeds had no significant decrease during storage. Finally, it was concluded that seed priming increased the tolerance to salinity stress; in terms of storability, there was no significant difference between primed seeds and primed seeds could be stored in the same way as control seeds.

Highlights:

  1. At the current research, the stability of prime seeds was investigated for the first time.
  2. There was no significant difference between the storability of primed seeds and control (unprimed) at each sampling time (with an exception for SA).
  3. Primed seeds had better germination performance than control at the all salinity stress levels.
  4. Seed priming treatments using gibberellic acid, humic acid and hydropriming were the best compared with the other treatments.

Alireza Gorzi, Heshmat Omidi, Abdolamir Bostani,
Volume 6, Issue 2 (3-2020)
Abstract



Extended abstract
Introduction: Stevia (Stevia rebaudiana Bert.) is a herbaceous perennial plant that belongs to the family of Asteraceae. Stevia is a self-incompatible herb and the seeds resulting from this plant have low germination ability. Steviol glycosides found in this plant are 250-300 times sweeter than sucrose and despite their sweet flavor; they are not absorbed by the body. In general, the poor germination capacity of Stevia seeds is a major impediment for its large-scale cultivation. Priming is one of the seed enhancement techniques that could lead to an increase of germination percentage and germination rate under stress conditions. Therefore, the present study was conducted to evaluate the impact of priming with salicylic acid (SA), iron (Fe) and zinc (Zn) on some germination indices, seedling growth as well as the content of photosynthetic pigments in Stevia under normal and drought stress conditions.
Materials and methods: A factorial experiment using a completely randomized design was carried out in the Seed Science and Technology Laboratory of Agricultural College, Shahed University, in 2017. The factors studied comprised four levels of drought stress (0, –0.3, –0.6 and –0.9 MPa) and seven priming combinations with SA, Fe and Zn. Non-primed seeds (dry seeds) were also considered as control. In this experiment, Fe and Zn were supplied by sources of iron (II) sulfate heptahydrate (FeSO4.7H2O, 0.5%) and Zinc sulfate heptahydrate (ZnSO4.7H2O, 0.5%), respectively. The traits examined in this study included germination percentage, radicle length, plumule length, seedling weight vigor index and the content of photosynthetic pigments and carotenoid.
Results: The results of this experiment indicated that the plumule length was more sensitive to drought stress, as compared with the root length. With increased intensity of drought stress from 0 to – 0.9 MPa, the content of photosynthetic pigments in Stevia significantly decreased in all the priming treatments, so that the lowest amounts of chlorophyll a, b and carotenoid were observed at the potential of – 0.9 MPa. Priming with SA + Fe + Zn was found to be more effective than other treatments in improving the germination characteristics and the chlorophyll content of Stevia under normal and drought stress conditions. At the highest level of drought stress, germination percentage, radicle length, plumule length, seedling vigor index and total chlorophyll content increased by 55.7, 50.5, 74.3, 90.3 and 85.5%, compared with the control in the concurrent application of Fe, Zn, and SA.
Conclusion: In general, seed priming by micronutrient elements (Fe and Zn) and salicylic acid, and particularly their integrated application, could be recommended to increase the resistance of Stevia to drought stress in the germination phase.
 
 
Highlights:
  1. Drought stress at the germination stage has a significant effect on the seedling growth and the content of photosynthetic pigments in Stevia.
  2. Seed priming increases drought tolerance of Stevia at the germination stage.
  3. The integrated application of SA, Fe, and Zn is more effective than their separate application to alleviate the drought-induced damaging effects.

Leila Karami, Mohammad Hedayat, Somayeh Farahbakhsh,
Volume 7, Issue 1 (9-2020)
Abstract



Extended abstract
Introduction: Seed germination is a complex and dynamic stage of plant growth, and seed priming is a technique by which the seeds obtain germination potential physiologically and biochemically before being placed on growth media and facing the ecological conditions of the environment. Seed priming increases yield and antioxidant enzymes in plants by increasing germination and seed vigor and as a result, increases percentage of germination. Several studies have investigated the effect of seed priming with organic materials including salicylic acid on improving seed germination in various plant species. Research results have shown that salicylic acid can be used as a growth regulator to increase the germination of plants. Tomato, with scientific name of Lycopersicon esculentum (Mill), belongs to the Solanaceae family and is widely adapted to different climatic and soil conditions. The aim of this study was to evaluate the effect of different concentrations of Salicylic acid on seed germination and some factors of morphophysiologic and biochemical traits of tomato seedlings.
Materials and methods: This research was conducted as factorial in a completely randomized design, including priming treatment in 3 time frames (12, 18 and 24 hours) with three replications. Priming treatments consisted of salicylic acid (2, 2.5 and 3 mg/l) and distilled water. The measured traits were germination parameters including percentage, time, rate, and uniformity of germination and morphological traits including transplant height, crown diameter, root length, leaf number, and leaf area, shoot and root fresh and dry weight and biochemical traits including chlorophyll, peroxidase enzyme, proline, total nitrogen, potassium, calcium, phosphorus, and sodium.
 Results: The favorable effect of salicylic acid was obtained at the concentration of 3 mg/l on mean germination time compared to the distilled water. The positive effect of salicylic acid was observed on transplant height and leaf area (at the concentration of 3 mg/l at 18 and 24 hours’ time frame), shoot and root fresh and dry weight (at 24 hours) compared to the control. Immersion in distilled water for a period of 12 and 24 hours resulted in the highest root length, while salicylic acid treatment reduced root length significantly. The highest transplant height (14.3 cm), leaf number (34), chlorophyll index (59), peroxidase enzyme (10873 unit/g.min-1), total nitrogen (2.89%), potassium (9.81%), and proline content (14.80 µM/g fresh weight) were observed in 24 hours treatment with concentration of 3 mg / l salicylic acid.
Conclusion: According to the results of this study, salicylic acid at certain concentration improves seeds germination of tomato plants through the regulation of physiologic and biochemical processes. It seems that salicylic acid led to increase in plant growth and improvement of seed germination and morphophysiological parameters of the tomato via affecting cell growth and division. Seed priming with salicylic acid at the concentration of 3 mg/l and in longer time frames had positive effect on most traits, whereas the results for each trait were different in relation to priming time.
 
Highlights:
1-Priming of tomato seed in distilled water for 18 hours reduces the time of seed germination.
2-Salicylic acid can be used as an appropriate pretreatment for producing seedlings with better quantitative and qualitative characteristics by affecting the morpho-physiologic and biochemical properties of tomato seedlings.

Marzieh Ababaf, Heshmat Omidi, Abdolmehdi Bakhshandeh,
Volume 7, Issue 2 (3-2021)
Abstract

Extended Abstract
Introduction: Catharanthus roseus is regarded as a medicinal ornamental plant. This plant has anti-cancer, anti-hypertensive, anti-diabetes, and antimicrobial properties. Catharanthus has a fairly long vegetative period due to its slow initial growth. The long growth period of the plant is considered one of the limitations in its cultivation on a larger scale. By using plant growth regulators such as salicylic acid (SA) in the imbibition phase and pre-treatment, an increase in seed activity and the seedling growth of many crops is observable. Also, jasmonic acid (JA) plant growth regulators play an important role in seed germination and plant growth. Regarding the long growth period of this plant, the small size of the seed, and poor establishment in the field with semi-heavy and heavy textured soils, the present study aimed to evaluate the effect of seed priming with SA and JA in different concentrations and periods on improving Catharanthus roseus seed germination indices.
Materials and Methods: The studies were conducted as a factorial experiment based on a completely randomized design with three replications at the Laboratory of Seed Science and Technology of Shahed University, Tehran, in 2017. Treatments included five different concentrations of SA (0, 0.01, 0.1, 0.5, and 1 mM), concentrations of JA (0, 1, 10, and 100 µM) and five periods of time (0, 6, 12, 24, and 48 hours). At the end of the experiment (10 days) traits such as germination percentage, germination rate, mean germination time, mean daily germination, germination value, seed length vigor index, seed weight vigor index, seedling dry weight, shoot dry weight, radicle dry weight, radicle length, shoot length, and seedling length were measured.
Results: The results indicated that the effect SA, JA, and time were significant on germination percentage, germination speed, mean germination time, mean daily germination, germination value, seedling length, seedling length vigor index, seedling weight vigor index, and radicle dry weight. The best times for pre-treatment with SA were 24 and 48 hours. Among the applied concentrations of SA, 0.5 and 1 mM concentrations showed the best results. Also, the best time and concentration for pre-treatment with JA were 12 and 24 hours and 10 µM.
Conclusions: The results of this study showed that using SA and JA for seed priming improved seed germination components. In addition to the pre-treatment concentrations of SA and JA, the duration of seed contact with growth regulators is important. It was observed that there was a significant difference among the different priming times, therefore, it can be stated that seed pre-treatment time is one of the important factors of seed priming, and the determination of proper priming time prevented the negative effect of pretreatment on germination and seedling growth in primed seeds.

Highlights:
1- The optimum concentrations of salicylic acid and the priming time of the seed were determined.
2- The appropriate concentrations of jasmonic acid and the optimum time for pretreatment of seed were determined.
3- The effect of growth regulators of salicylic acid and jasmonic acid on seed germination indices was evaluated.

Mehrdad Mahlooji, Mehrdad Jenab,
Volume 8, Issue 1 (9-2021)
Abstract

Extended abstract
Introduction: Barley is the fourth largest cereal crop in the world and the second cereal crop in Iran in supplying food needs. Considering population growth and food shortages, it is important to look at ways to increase production. Seeds of higher quality and vigor emerge better when exposed to biotic and abiotic stresses and have stronger seedlings with higher vigor. It seems that one of the appropriate strategies for reducing or moderating the effect of stress on yield is foliar application with micronutrients which can also affect germination and vigor of the produced seeds. For this purpose, the effect of water stress and foliar application on germination characteristics and vigor of barley seeds was investigated.
 Materials and Methods: A factorial experiment was carried out based on CRD with four replications on the seeds resulted from a field experiment at Isfahan Kaboutarabad Agricultural Research Station, during the cropping year of 2018-19.  The main factors was foliar application at five levels: no foliar application(water use), zinc sulfate (0.5%), potassium sulfate (0.5%) and salicylic acid (1.5 mM), and superoxide dismutase (3 mg/liter) at the start of tillering for three times at seven day intervals and the sub-factor was genotypes was Goharan (drought tolerant), Mehr (salt-tolerant) and Armaghan (stress-sensitive). After harvesting, germination traits were evaluated.
Results: Foliar application of maternal barley plant at the late season drought stress had a significant effect on root and shoots length, root and shoot dry weight, length and weight vigor indices, allometric coefficient and germination uniformity of seed. Also among the studied cultivars in late season irrigation cut off conditions, Goharan cultivar had a better shoot and root development (seedling vigor weight index) and higher seed germination uniformity.
Conclusion: Foliar application of potassium sulfate and zinc sulfate on different barley cultivars resulted in favorable metabolic conditions in seed and due to better root development and higher dry weight than stem development and as a result, higher allometric coefficient and better establishment under late season drought stress, may provide better growth conditions under drought stress conditions.
 
Highlights:
  1. Goharan barley cultivar responds more positively to foliar application under late season drought stress conditions.
  2. Foliar application of potassium sulfate, zinc sulfate and super oxidase superoxide on Goharan cultivar maternal plant under late season drought stress condition led to the highest seedling root length, root dry weight and shoot dry weight.

Habibolah Moazen, Mehdi Hosseinifarahi, Azam Amiri,
Volume 8, Issue 2 (3-2022)
Abstract

Extended Abstract
Introduction: Today, seed priming is widely used to improve seed germination in a wide range of plant species. As a result of seed pre-treatment, several molecular and biochemical changes occur, including increased macromolecule synthesis, enzyme activity and formation of different metabolites. Enzymatic and metabolic activities, synthesis of proteins in quantitative and qualitative terms, and respiratory activities and, the formation of ATP for the synthesis of macromolecules, membranes, and materials required for the cell wall are increased during and after seed preparation. The aim of this study was to investigate the effect of seed priming using some hormonal and nutritional treatments as well as the type of culture medium on germination characteristics and quality of Karun tomato seedlings.
Materials and Methods: Two separate experiments were performed in two laboratory and pot stages in a completely randomized design with three replications. In the first experiment, the treatment used included seed priming at six levels (distilled water, 0.2 mM salicylic acid, 0.2 mM putrescine, 1.5% humic acid, 0.03% zinc sulfate, and 0.2 mM potassium nitrate). In the second experiment, the treatments used included the culture media type at six levels (coco peat, perlite, peat moss, 50% cocopeat + 50% perlite, 50% coco peat + 50% peat moss and 50% perlite + 50% peat-moss).
Results: Analysis of variance showed that the effect of different levels of seed priming on seed germination percentage and root length was significant. The highest germination percentage was obtained six days after cultivation in salicylic acid treatment and was equal to 97.1%. The highest shoot dry weight in peat moss treatment was 1.7 g and the lowest shoot dry weight in perlite treatment was 0.3 g. The use of peat moss treatment in comparison with coco peat increased seedling length by 31.3%.
Conclusion: Application of 0.2 mM salicylic acid, putrescine and humic acid improved seed germination compared with zinc sulfate and potassium nitrate. Also, application of peat moss and combined peat moss treatments in comparison with coco peat and perlite, increased the dry weight of roots and shoots of the plant as well as increasing the absorption of various elements.
 
Highlights:
1- Germination percentage and rate of tomato var. Karun significantly increased by salicylic acid and putrescine application (Karun cultivar)
2- Peat mass is the best culture medium for the commercial production of tomato seedlings var. Karun

Vahid Mohasseli, Mahmood Izadi, Mohammad Hadi Roohian,
Volume 9, Issue 2 (3-2023)
Abstract

Extended Abstract
Introduction: Lentil is a dicot, annual, and cross-pollinating plant that is found mainly in Fars, Khuzestan and East Azerbaijan provinces. The seeds of the plant are used in the treatment of cholesterol and blood sugar. Abiotic stresses such as salinity are important factors in reducing plant growth and yield. Although salinity can remarkably affect plant growth, its intensity depends on duration, type, plant species and growth stage. The greatest effect of salinity during the germination process is on germination rate and percentage and radicle and plumule length, as the increased concentration of ions in Therefore, studying of plant germination under salt stress and application of compounds such as salicylic acid to improve plant tolerance to salinity in saline areas can serve as a guideline for the cultivation of plants under such conditions. Therefore, this research aimed to study the effect of salicylic acid on the germination and growth parameters of Securigera securidaca L. under salinity conditions.
Materials and Methods: The experiment was conducted as a factorial in a completely randomized design with three replications under the germinator conditions in the laboratory of Fars Agricultural and Natural Resources Research and Education Center. Experimental treatments consisted of 5 levels of salinity stress (0, -0.3, -0.6, -0.9 and -1.2 MPa) and 3 levels of salicylic acid (0, 1 and 2 mM). The seeds were soaked in the treatments for 24h. At the end of the experiment (8 days), germination percentage and rate, seed vigor index, and fresh and dry weight of radicle and plumule were measured and calculated.
Results: The results showed that all plant responses were affected by different osmotic potentials at p<0.01 compared with the control. The highest germination percentage was 91.11 under stress-free conditions and the application of salicylic acid at 1 mM. During the comparison of means for salicylic acid, the highest mean plumule length (10.88 mm) was related to 1 mM salicylic acid solution and the lowest (6.35 mm) was for control treatment, which showed an increase of 71.34%. Also, soaking seeds with salicylic acid caused an 84.98% increase in root fresh weight. An increase in salinity led to 96.30 and 94.62% decrease in radicle and plumule dry weights, respectively.
Conclusions: The study showed that soaking seeds with salicylic acid improved germination under salt stress conditions. Therefore, seed placement in salicylic acid solution (1 Mm) prior to cultivation can be used to improve the germination of Securigera securidaca L. under salinity conditions.

Highlights:
1-­ The most suitable concentration of salicylic acid for seeds soaking to increase plant tolerance to salinity stress is 1 mM.
2-­ Soaking of Securigera securidaca L. seeds in salicylic acid increases germination, seed vigor index and radicle and plumule length and weight under saline and non-saline conditions.
Marziyeh Ababaf, Heshmat Omidi, Abdolmehdi Bakhshandeh,
Volume 10, Issue 1 (9-2023)
Abstract

Extended Abstract
Introduction: Various strategies have been used to improve growth and productivity of crops through genetic approach, genetic engineering, and breeding. However, economic feasibility and ease of use can pave the way for the application of priming techniques as "stress relievers" in agricultural production. The aim of this study was to evaluate the ability of priming Catharanthus roseus seed with phytohormones of salicylic acid and Jasmonic acid under drought stress to reduce the effect of water limitation during the germination.
Materials and Methods: Two separate studies were conducted as a factorial experiment based on a completely randomized design with three replications at the Laboratory of Seed Science and Technology of Shahed University, Tehran. In the first experiment, treatments included priming in two levels of SA (0.5 and 1mM) and priming duration in two levels (24 and 48 hours), and drought stress with polyethylene glycol 6000 in 6 levels (0, 0.1, 0.5, 1, 1.5 and 2 Mpa). In the second experiment, treatments included JA (10 µM), priming duration in two levels (12, and 24 hours) and drought stress in levels six (0, 0.1, 0.5, 1, 1.5, and 2 Mpa). Dry seeds (without pretreatment) were considered as control.
Results: In this study, drought stress treatments -1.5 and -2 Mpa in the first experiment and -1, -1.5 and -2 Mpa in the second one had no germination. Seed priming with SA and JA improved the percentage of seed germination so that in the first experiment, the highest percentage of germination (97.33) was observed under stress-free conditions with the application of 0.5 mM salicylic acid for 48 hours, which was 12.2% higher than the control treatment. 0.5 Mm of SA treatment with 24 hours of priming showed the highest percentage of germination under drought stresses of -0.1 and -0.5 Mpa. However, under drought stress conditions of -1 Mpa, 0.5 mM SA+48 hours treatment was superior compared to other treatments of salicylic acid and time. In the second experiment, the highest percentage of germination (98.3) was in the concentration of 10 μM jasmonic acid during 24 hours of priming under stress-free conditions, which showed an increase of 40.4% compared to the control treatment.
Conclusion: The results of the present study showed the importance of salicylic acid and jasmonic acid during seed germination stage under drought stress. Seed priming with salicylic acid alleviated the damages caused by drought stress on germination and growth. The process of adaptation to stress started by jasmonic acid can be attributed to pretreatment with jasmonic acid before applying drought stress.

Highlights:
  1. The effect of priming Catharanthus roseus seeds with salicylic acid and jasmonic acid phytohormones on the germination characteristics of seeds under drought stress was investigated.
  2. Priming Catharanthus roseus seeds with salicylic acid improved the germination percentage and characteristics of seeds under drought stress.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.