Search published articles

Showing 8 results for Protein

Sayyed Ali Tabatabaei, Omid Ansari,
Volume 3, Issue 1 (8-2016)

The objective of this research was to evaluate the effect of salicylic acid and gibberellic acid on germination characteristics and changes of proline, protein and catalase activity of Brassica napus seedlings under Cu(SO4) stress. The experimental design was factorial with complete randomized design as a base design with 3 replications. The first factor was 4 levels of Cu(SO4) stress (0, 10, 20 and 30 mg/l), and the second factor was 4 levels of priming with salicylic acid and gibberellic acid 50 mg/l, hydro prime and control (non-priming). Results showed that with increasing levels of Cu(SO4) stress, germination characteristics (germination percentage, germination rate, normal seedling percentage, seedling length and seed vigor index) reduced and using of salicylic acid, gibberellic acid and hydro prime increased germination characteristics. The highest germination percentage (94%), germination rate (30.75 seed per day), normal seedling percentage (86.17%) seedling length (10.53 cm) and seed vigor index (9.08) were attained from priming by salicylic acid 50 ppm under non-stress conditions. Cu(SO4) stress increased proline (35%) and catalase (37%) activity but reduced protein (65%) and priming increased proline, protein and catalase activity as compared to unprimed under stress and control conditions. In this study, using priming treatment salicylic acid had usually higher germination characteristics and catalase activity, total proteins and proline content in comparison with untreated or control seeds.

Mehdi Aghighi Shahverdi, Heshmat Omidi, Sayed Esmail Mousavi,
Volume 3, Issue 2 (2-2017)

For the purpose of evaluating the effect of chitosan on seed germination and some biochemical characteristics of the milk thistle herb in the conditions of salinity, an experiment was conducted as factorial in a completely randomized design (CRD) with three replications in the Laboratory of Seed Science and Technology of Shahed University, Tehran in 2015. Experimental factors comprised salinity levels (0, 4, 8 and 12 dS.m-1) and different levels of Chitosan (0, 0.25, 0.5, 0.75 and 1 percent). The results showed that salt stress reduced germination percentage, germination coefficient, germination speed, weight and length vigor index, radical, plumule and seedling length and total biomass and increased mean germination time. Seed priming with chitosan up to 0.5% concentration increased germination coefficient, weighted index vigor and plumule length. The highest amounts of total chlorophyll and total protein were obtained in seed priming with 0.5% chitosan levels in zero salinity level (control). By increasing salinity levels, the activity level of catalase and peroxidase increased, so that the highest level of the activity of these two enzymes was obtained in the salinity level of 12 dS.m-1 in pre-treatment with 0.5% Chitosan. The results showed that seed priming with chitosan of 0.5% could reduce harmful effects of salt stress on some traits of milk thistle seedlings and could even improve their growth.

Fereshteh Darabi, Maryam Valipour, , Rahim Naseri, Meysam Moradi Moradi,
Volume 4, Issue 1 (9-2017)

Unfavorable storage conditions, especially relatively high environment humidity and high storage temperature greatly affect the quality of corn seeds. The effects of temperature, environment moisture and length of storage on six maize hybrids were examined. For the purpose of investigating germination traits, total soluble proteins, leakage electrolytes and the activity of antioxidant enzymes in maize hybrids, an experiment was carried out at the Agronomy and Plant Breeding Laboratory of Ilam University in 2016. The study was conducted as two factorial experiments, adopting a completely randomized design with three replications. The first factor comprised six maize hybrids (single crosses: 703, 706, 711, 604, Mobin and 701) that were obtained from Karaj Seed Breeding and Seedling Institute, Iran. The second factor was accelerated aging test in four levels involving non-aging (control treatment), aging for 4, 8 and 12 days under 40°C temperature and 95% humidity. The results showed that mean time to germination and electrolyte leakage significantly increased with aging duration. Mean time to germination and electrolyte leakage of the hybrids 701, Mobin and 711 increased more than the other hybrids. In addition, antioxidant enzyme activity decreased significantly with an increase in the aging period. These results indicated severe damage to cell membranes and enzyme activity in these hybrids. Moreover, there was a significant and positive correlation between germination percentage and the enzyme peroxides, as compared with other antioxidant enzymes. Although antioxidant enzyme activity exhibited a significant reduction in seed deterioration, nonetheless, generally speaking, compared with other varieties, KSC 703 was more tolerant.

  1. The germination response of six hybrids of the maze to seed deterioration was investigated.
  2. The role of antioxidant enzymes in deteriorated seeds of maize hybrids was examined.

Seyed Ali Tabatabaei, Omid Ansari,
Volume 5, Issue 2 (3-2019)

Extended abstract
Introduction: Heavy metal pollution is one of the most serious environmental problems. These metals which accumulate in food chain bring about a lot of hazards to both humans and animals. Among heavy metals, lead is considered to be the most dangerous heavy metal in the environment. It contaminates the environment through the lead-acid battery industry, paint and gasoline additives, insecticides, chemical fertilizers, car exhaust pipes and soldering. The objective of this study was to investigate the effect of Pb(NO3)2 on germination characteristics and biochemical changes of two wheat cultivars (Chamran and Kohdasht cultivars).
Materials and Methods: The objective of this research was to evaluate germination and biochemical changes of two wheat cultivars under Pb(NO3)2 stress, using three-parameter sigmoid model. The experimental design adopted was factorial with a completely randomized design, as the base design, with 3 replications. The first factor was 2 wheat cultivars (Kohdasht and Chamran), and the second factor was 6 levels of Pb(NO3)2 (0, 0.25, 0.5, 0.75, 1 and 1.5 mg.L).
Results: The results showed that with increases in levels of Pb(NO3)2 stress, germination percentage, germination rate, normal seedling percentage, seedling length, seedling weight and seed vigor index reduced for both wheat cultivars. The results of fitting three-parameter sigmoidal to characteristics indicated that the highest characteristics and X50 were obtained from the Chamran cultivar. The highest germination percentage (96%), germination rate (23 seeds per day), normal seedling percentage (93.33%), seedling length (13.07 cm), seedling weight (0.07) and seedling vigor index (12.18) were obtained from the Chamran cultivar under non-stress conditions. Pb(NO3)2 stress increased proline and catalase activity but reduced protein, proline and protein for the Chamran cultivar, as compared with the Kohdasht cultivar.
Conclusion: Generally speaking, the results showed that Pb(NO3)2 had a significant effect on germination characteristics and catalase, proline and protein of wheat. Finally, it could be said that in copper-accumulated areas, choosing proper cultivars can slightly mitigate the damages caused by copper. The Chamran cultivar seems to be a better candidate for these conditions.

  1. Evaluation of the effect of Pb(NO3)2 stress on germination characteristics of wheat.
  2. Using three-parameter sigmoid model for the evaluation of biochemical changes and germination of wheat under Pb(NO3)2 stress.

Yaser Alizadeh, Ehsan Zeidali, Hamid Hassaneian Khoshro,
Volume 5, Issue 2 (3-2019)

Extended abstract
Introduction: Crop rotations are practiced to eliminate the effect of monoculture, but the succeeding crop may be influenced by the phytotoxins released by the preceding crop. Among plants, Brassica species contain allelochemical compounds as glucosinolate that is, under special conditions, released to environment and affects seed germination and plant growth. Wild mustard (Sinapis arvensis L.) as a weed of 30 crops in 52 countries which has a series of allelopathic effects that prevent germination of other plants. Products of glucosinolate- like ionic thiocyanate (SCN-) inhibited the root or shoot growth of many crop species. Also volatile compounds like isoprenoid and benzenoid released from Brassica tissue degradation may suppress many crops growth. It was also found in many studies that allelochemicals, which inhibited the growth of some species at certain concentrations, might stimulate the growth of same or different species at lower concentrations. The present research was conducted to evaluate the effects of aqueous extract concentration of various mustard parts on barley seed germination and seedling growth.
Materials and Methods: In order to evaluate the allelopathic effect of mustard in agro ecosystems, a factorial experiment based on completely randomized design with three replications was carried out in botany laboratory of agriculture faculty, Illam University in 2014. Experimental treatments included five concentrations of mustards foliage and root aqueous extract (0, 10, 30, 50, and 70 percent) that were studied at germination and early growth stage of barley (cv. Abidar) in two separate experiments. In the seed germination section, the effects of aqueous extract of mustard on germination rate and germination percentage of barley seed were measured. In the study of the effect of aqueous extract of mustard on barley seedlings, weight and length of root and shoot, leaf chlorophyll content, proline and soluble sugars content were measured.
Results: Results showed that the highest amount of barley seed germination percentage and germination rate (100 and 19.5, respectively) were observed in control and the lowest amount (40 and 9.5, respectively) belonged to mustard root aqueous treatment with 70 percent concentration. The most decrease in barley seedlings length and weight were observed at the highest concentration of aqueous extract. The amount of chlorophyll a decreased from 2.39 in control to 1.66 mg per fresh weight in 70 percent concentration of aqueous extract treatment. The highest amount of proline (66.8 μM per fresh weight) in barley foliage was observed in 70 percent aqueous extract treatment. The results from this study showed that mustard allelopathic effect may be a possible mechanism controlling the barley germination and early growth stage in agro ecosystems.
Conclusion: Generally, we were able to demonstrate short term auto toxicity and possible short-term allelopathy due to mustard has harmful effects on barley including reduced seed germination and emergence of barley seedling. Depending on the concentrations of Mustard extract, allelopathic activity will vary Mustard. Further investigations are also needed to determine the influence of cultivar variations, and to identify the active compounds involved in mustard auto toxicity and Allelopathy.
1-Mustards aqueous extract reduced seed germination percentage and plant growth in barley.
2-Mustards aqueous extract increased proline and soluble sugars in barley, but it reduced amount of chlorophyll in this plant.

Saman Sheidaei, Aidin Hamidi, Hossein Sadeghi, Bita Oskouei, Leila Zare,
Volume 6, Issue 1 (9-2019)

Extended Abstract
Introduction: Understanding the complex characteristics that control the life span of the seed has ecological, agricultural and economic importance. Inappropriate storage conditions after harvesting destroy a large part of annual yield partly due to microbial activity in the storage. Damage from storage fungi varies based on the climatic conditions, crops and storage facilities. This study was carried out to investigate the effect of storage conditions and initial seed moisture content on the growth of storage fungi and also the relationship between the degree of contamination with fungi and the quality and biochemical changes of the seeds.
Materials and Methods: The present study was carried out as a factorial experiment based on a completely randomized design to assess the impact of storage fungi on soybean seed deterioration at different storage conditions. The treatment included three degrees of initial seed moisture content including low moisture content (10%), medium moisture content (12%) and high moisture content (14%) as the first factor. Moreover, two storage conditions including the seed storage in Moghan and controlled seed storage in Seed and Plant Certification and Registration Institute were considered as the second factor. Soybean seeds of Williams's cultivar were investigated for the infection of Aspergillus flavus, Aspergillus niger, Fusarium and Penicillium fungi and also related biochemical traits and seed quality such as germination percent, seedling vigor index, soluble sugar and total protein.
Results: The results of this experiment showed that the increase of the seed moisture content by 14% can significantly decrease the seed quality. Therefore, the seed moisture content of 14% was identified as unsuitable moisture for the storage of soybean seeds. In addition, the infection with storage fungi has a direct relationship with the degree of seed moisture and seeds with high moisture content are rapidly attacked by the storage fungi which can decrease seed quality and viability. Moreover, the Aspergillus niger infection increased from 27.5 to 43.75 and the germination percent decreased from 52.5 to 23 percent in seeds with a moisture content of 14% in Moghan storage, as compared with the controlled storage. Furthermore, this study showed that when the percentage of storage fungi increases, the soybean seed deterioration increases. Studying the biochemical changes of deteriorated seeds during the storage showed that as the aging of the seeds increases, soluble sugars and protein percentage decrease. The amounts of soluble sugars and total protein of the seed were significantly lower in seeds maintained under unsuitable conditions. Furthermore, the content of soluble sugars and total protein decreased significantly by the increase of the seed moisture, which resulted in the increase in seed deterioration.
Conclusions: Based on the obtained results, initial seed moisture and storage conditions are two important determinants of fungi infestation during storage, which can affect the content of soluble sugars and total protein causing seed deterioration, seed vigor and viability. It can be concluded that the soybean seed moisture content of 12%, which is the standard moisture content of soybean seed production in Iran, is regarded as suitable moisture for seed storage.
  1. Introduction of proper storage conditions and initial seed moisture in order to decrease fungal damage and soybean seed deterioration.
  2. Determination of different fungal damages during the storage of soybean seeds.
  3. Determination of relationship between the degree of soybean seed infection of storage fungi and the seed’s quality, its amount of protein and soluble sugars.

Farshid Yousefi, Abdolreza Sihampoosh, Abdolmahdi Bakhshandeh, Seyyed Amir Mousavi,
Volume 8, Issue 1 (9-2021)

Extended Abstract
Introduction: Coneflower herbal medicinal plant is from the Asteraceae family, native to North America. Because of its immune-boosting properties, it is used to treat a variety of pathogens. The seed germination stage is one of the crucial and crucial stages in the growth cycle of plant species that can play an important role in the production process by optimal establishment of seedlings. Seed of Coneflower germinates and grows very slowly and weakly. Therefore, the use of some plant growth regulators, such as the gibberellin hormone, can play an important role in improving seed germination. The aim of this study was investigate the effect of hormone seed priming using gibberellin on seed germination quality of Coneflower.
Material and Methods: A factorial experiment was conducted based on the complete randomized design arranged with three replications. The experiment was conducted at the seed technology laboratory of Agricultural Sciences and Natural Resources University of Khuzestan, 2018. Experimental treatments were different concentrations of gibberellin (0, 50, 100, 200, 400, and 800 mg/l) as the first factor and the durations of seed priming (12, 24, and 48 hour) as the second factor.
Results: Results of in vitro studies showed that the interaction of gibberellin in priming time on percentage, rate and mean germination time, root and shoot length, seed vigor index, peroxidase activity at 1% and Seed soluble protein content was significant at 5% level. Seed germination quality and protein content increased by the application of 200 mg/l gibberellin for the 24 hours, whereas at the concentrations of 400 and 800 mg/l, gibberellin reduced germination quality and antioxidant enzymes activities. Results of stepwise regression models of antioxidant enzymes activity and protein content with germination indices showed that these traits were significantly entered into the prediction model. It was observed that in all traits except for the rate and the mean germination time, the amount of protein entered the prediction equation. In general, stepwise regression models predicted stem length and power index better than other traits and showed the highest coefficients in these traits with values of 0.85 and 0.83. Also, catalase and peroxidase activities were significantly correlated with rate and mean germination time only. The amount of soluble protein had a positive and significant correlation with all studied traits except germination rate and mean germination time. The highest correlation coefficients for protein content were obtained from longitudinal power index with correlation coefficient (r = 0.856).
Conclusion: Based on the obtained results, the best hormone priming treatment was 200 mg/l gibberellin for the durations of 24 hour.
1- The role of gibberellin hormone on seed germination traits Coneflower was evaluated
2- The effect of gibberellin hormone on the activity of antioxidant enzymes and soluble proteins during seed germination was investigated.

Mahnaz Mansouri, Ali Moradi, Hamidreza Balouchi, Elias Soltani,
Volume 8, Issue 1 (9-2021)

Extended abstract
Introduction: Seed is the most important sexual reproductive factor in plants that plays an important role in transmitting hereditary characteristics, plant distribution, and establishment in different regions. Seed germination as one of the most important and complex stages in the life cycle of plants is affected by genetic and environmental factors. Drought stress is one of the main barriers of crop plants and trees, production in many parts of the world, especially in arid and semi-arid regions such as Iran. The purpose of this study was to investigate the effect of drought stress on biochemical and seed germination indices of different seed lot of Ziziphus spina–christi as suitable medicinal species for controlling soil erosion in arid regions.
Materials and Methods: This experiment was conducted as a factorial based on a completely randomized design with four replications at the Seed Science and Technology Laboratory of Yasouj University in 2018. Experimental factors included Ziziphus spina–Christi seeds collected from the regions of Minab, Kazeroon, Masjed Soleiman, and Dehdasht and five water potentials including zero, -2, -4, -6, and -8 bar.
Results: In the present study, the effect of osmotic potential, seed lot, and their interaction were significant in each seed lot on germination (germination percentage, germination rate, seedling length, allometric index, longitudinal vigor) and biochemical (hydrogen peroxide, soluble protein content, Proline, catalase, and ascorbate peroxidase) indices of Ziziphus spina–christi. The results showed that except for allometric index response of all studied germination traits to osmotic potential was decreasing, Also with increasing osmotic potential, seed soluble protein was decreased and the amount of proline and activity of catalase and ascorbate peroxidase increased. With increasing osmotic stress, the root length was significantly increased, which increased the allometric coefficient of the seedling.
Conclusion: Germination and biochemical indices of seeds of all seedlots had significant changes with the reduction of osmotic potential and the reduction of osmotic potential was associated with reduced germination and plant establishment capability. These results can help us to recognize the prerequisites of germination and the development of the forests.

1- Germination indices of seeds related to several Ziziphus spinachristi seed lots were investigated under different water potentials.
2- Biochemical aspects related to seed dormancy in several Ziziphus spinachristi seed lots were evaluated.

Page 1 from 1     

© 2022 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.