Search published articles


Showing 12 results for Gibberellic Acid

Amin Salehi, Asad Masumiasl, Ali Moradi,
Volume 2, Issue 1 (9-2015)
Abstract

Bilhar or Mountain Kandall (Dorema aucheri) belongs to Apiacea family that contains flavonoid and coumarine compounds. Since propagation of this plant in natural habitats occurs through seed and due to deep dormancy, the identification of different seed dormancy breaking methods is necessary for the preservation of this species. In this respect, different methods, including chilling, washing and gibberellic acid was studied, on the seeds gathered from Kohgiloyeh and Boyerahmad province. For this reason, a factorial experiment with three factors was done based on a completely randomized design in three replications, in the faculty of agriculture, Yasouj University, in 2012. Experimental factors were included, chilling period (stratification periods of 3 and 4 weeks), gibberellic acid (zero and 1500 ppm) and washing (washing with distilled water and non-washable). Results showed that 4 weeks chilling treatment had maximum germination percentage and germination rate and seedling vigor. Also, maximum root and shoot dry weight were obtained from the seeds of this treatment. Whereas, double and triple interaction effects for germination percentage, epicotyl and hypocotyl length were not significant. Germination percentage was better in 4 weeks prechilled seed than 3 weeks. Obtained results from this research showed that Bilhar seeds have the physiological dormancy.


Zaynab Taghinezad, Massoud Dehdari, Amin Mirshekari, Hossain Zainali,
Volume 3, Issue 1 (8-2016)
Abstract

Medicinal barberry plants, belong to Berberidaceae family. Seeds of barberry have long period dormancy. Therefore, overcome to seed dormancy and increasing germination rate of seeds due to different methods will be useful. In this regard, two separate experiments were designed. In the first experiment, effect of different levels of Gibberellic acid (0, 600 and 900 mg.l-1 at 8˚C) and temperatures (25 (control), 10 and 5 °C at 50 days) in a factorial experiment based on the completely randomized design with three replications and in the second experiment, effect of different nutrition concentrations of MS medium (full strength MS, 1/2MS and 1/4 MS) in a completely randomized design with three replications on embryo culture of four native species of barberry (Berberis integrima, B. vulgaris, B. crataegina and B. orthootrys) were investigated. Based on the results obtained from the first experiment, chilling treated seeds showed the greatest effect (88%) on seed germination in comparison with gibberellic acid treatment. The results of the second experiment showed that the best MS concentration for embryo culture was full strength MS medium with%100 seed germination in four above mentioned barberry species after 2-3 days. In general, the best method to overcome barberry seed dormancy was an embryo culture in full-strength MS nutrition.


Sayyed Ali Tabatabaei, Omid Ansari,
Volume 3, Issue 1 (8-2016)
Abstract

The objective of this research was to evaluate the effect of salicylic acid and gibberellic acid on germination characteristics and changes of proline, protein and catalase activity of Brassica napus seedlings under Cu(SO4) stress. The experimental design was factorial with complete randomized design as a base design with 3 replications. The first factor was 4 levels of Cu(SO4) stress (0, 10, 20 and 30 mg/l), and the second factor was 4 levels of priming with salicylic acid and gibberellic acid 50 mg/l, hydro prime and control (non-priming). Results showed that with increasing levels of Cu(SO4) stress, germination characteristics (germination percentage, germination rate, normal seedling percentage, seedling length and seed vigor index) reduced and using of salicylic acid, gibberellic acid and hydro prime increased germination characteristics. The highest germination percentage (94%), germination rate (30.75 seed per day), normal seedling percentage (86.17%) seedling length (10.53 cm) and seed vigor index (9.08) were attained from priming by salicylic acid 50 ppm under non-stress conditions. Cu(SO4) stress increased proline (35%) and catalase (37%) activity but reduced protein (65%) and priming increased proline, protein and catalase activity as compared to unprimed under stress and control conditions. In this study, using priming treatment salicylic acid had usually higher germination characteristics and catalase activity, total proteins and proline content in comparison with untreated or control seeds.


Mostafa Alinaghizadeh, Mohammad Khajeh-Hosseini, Seyed Ahmad Hosseini, Mohammad Hasan Rashed Mohasel,
Volume 3, Issue 2 (2-2017)
Abstract

In order to study the seed germination behavior and dormancy breaking methods of three weed species (i.e., Chenopodium album, Convolvulus arvensis and Setariaviridis) of pistachio orchards in Rafsanjan, Iran, three separate factorial experiments (with 2 factors) were conducted based on a completely randomized design with four replications, at the Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Iran, in 2014. Weed seeds were collected from five different regions of Rafsanjan, such as Markazi, Anar, Koshkoiyeh, Kabotarkhan and Nogh. Dormancy breaking treatments for Chenopodium album involved distilled water (control), KNO3 (at 500 and 1000 ppm), chemical scarification by sulfuric acid (for 5 and 10 min), and cold stratification (for 1, 3 and 5 weeks). Treatments for Convolvulus arvensis involved distilled water (control), scarification by sandpaper, chemical scarification by sulfuric acid (20 and 30 min), and boiling water (for 15 and 30 min). Treatments for Setaria viridis involved distilled water (control), gibberellic acid (250, 500 and 1000 ppm), KNO3 (500 and 1000 ppm), and cold stratification (for 1, 3 and 5 weeks). The results showed that seed germination percentage (SGP) and mean germination time (MGT) of three weed species were significantly different among weed populations and dormancy breaking methods. For Chenopodium album, cold stratification of 5 weeks resulted in highest SGP (97%) in Nogh population. For Convolvulus arvensis and Setaria viridis, the highest SGP was obtained after scarification by sandpaper (98% in Kabotarkhan population) and using 1000 ppm gibberellic acid (60% in Kabotarkhan population), respectively. In addition, increasing the weight of 1000 seeds in the three weed species in question increased SGP.
 
 


Shirin Taghi Zoghi , Elias Soltani , Iraj Alahdadi , Reza Sadeghi ,
Volume 4, Issue 2 (3-2018)
Abstract

This study was conducted to study the effects of different priming methods on germination rate and percentage under salinity stress and to determine the stability of primed seeds. In order to accomplish this, three different experiments were conducted separately, including the experiment of water uptake, the experiment of salinity stress, and the experiment of storability of primed seeds. Priming treatments were five levels of control (unprimed), hydropriming (Hyd), priming with humic acid (HA), priming with salicylic acid (SA) and priming with gibberellic acid (GA). Salinity stresses were four levels of 0, 4, 8 and 12 ds/m of NaCl. The stability of prime seeds was investigated over a period of 226 days after priming. The results of water uptake showed that rapeseeds entered into the third phase of water uptake after 18 hours of hydration. The results of the salinity experiment showed that salinity levels of 12 and 0 ds/m had the lowest (74.3 %) and highest (83 %) germination percentage, respectively. In terms of germination rate, there were significant differences between GA (0.034 h-1), HA (0.036 h-1) and Hyd (0.036 h-1) with C (0.019 h-1) and SA (0.027 h-1). Generally speaking, primed seeds germinated better than control seeds at all levels of salinity. The storability of primed seeds and control seeds had no significant decrease during storage. Finally, it was concluded that seed priming increased the tolerance to salinity stress; in terms of storability, there was no significant difference between primed seeds and primed seeds could be stored in the same way as control seeds.

Highlights:

  1. At the current research, the stability of prime seeds was investigated for the first time.
  2. There was no significant difference between the storability of primed seeds and control (unprimed) at each sampling time (with an exception for SA).
  3. Primed seeds had better germination performance than control at the all salinity stress levels.
  4. Seed priming treatments using gibberellic acid, humic acid and hydropriming were the best compared with the other treatments.

Elahe Hoseinpur Askarian, . Ali Abbasi Surki, Abdolrazagh Danesh Shahraki,
Volume 6, Issue 1 (9-2019)
Abstract



Extended Abstract
Introduction: In addition to dormancy, seeds of Allium hirtifolium have a weak emergence in the field. Among methods for improving the efficiency and emergence of seeds, nutritional priming can be considered for its performance on weak seeds. The presence of micronutrients is one of the factors that may affect the efficiency of the seeds. Therefore, the aim of this study was to investigate the effect of priming with nutrients on optimization of dormancy status, germination, and enhancement of shallot seeds for its conservational, restoration and domestication programs.
Materials and Methods: In order to study effects of nutrients on germination and emergence of Allium hirtifolium, a CRD factorial experiment was conducted with four replications at Seed Science and Technology Lab of Shahrekord University in 2015. Two dormancy breaking treatments (sulfuric acid and sulfuric acid + gibberellic acid) as the first factor and nine nutrition treatments including four levels of ZnSO4 (5, 10, 50 and 100 mM) and four levels of FeSO4 (0.5, 1, 1.5 and 2%) versus control were compared on shallot seeds.
Results: The results showed that dormancy breaking treatments, nutrient pretreatment of seeds and their interaction had significant effects on germination percentage, germination rate, time to reach l0% and 50% germination, germination uniformity, seedling length and vigor index I at 1% probability level. Sulfuric acid and FeSO41% increased germination versus control. Application of gibberellic acid affected the behavior of iron but did not indicate significant effects for zinc. The concentration of 5 mM ZnSO4 increased the rate of germination, compared with the control but decreased with higher concentrations. The gibberellic acid did not show any sharp effects on germination rate. Time to reach 50% germination was also affected by FeSO4 0.5% and 1% and lower levels of zinc. Application of gibberellic acid did not show any significant impact on the germination time reduction, compared with control and increased T50 in higher concentrations. Although germination traits were rarely affected by gibberellic acid, seedling length and vigor index were positively influenced with GA, and the highest seedling length was achieved at 0.5 and 1% of iron and gibberellic acid.
Conclusion: Seed priming with nutrients can improve germination and plant vigur indices. Different concentrations of iron and zinc showed different impacts on the seeds, which showed interaction with dormancy breaking methods. Although application of gibberellic acid did not have an effective role in increasing germination rate and reducing the time to reach 10% and 50% of germination, it enhanced seedling length and vigor index I, especially for iron.
 
 
Highlights:
  1. Addition of iron and zinc sulfate to shallot seeds whose dormancy was broken with sulfuric acid caused higher germination rate of  25.54%, compared with the control.
  2. Gibberellin compensated for zinc effect in germination and was able to replace it, but had a slight synergic effect with iron sulfate.
  3. Although gibberellin application did not affect germination traits, the seedling length and vigor index showed a positive response to it.

Ali Asharf Mehrabi, Somayeh Hajinia,
Volume 6, Issue 1 (9-2019)
Abstract



Extended Abstract
Introduction: White Astragalus (Astragalus gossypinus Fisherr.) is one of the valuable plants for producing gum, which is of critical importance in soil conservation and the economy of the country. This plant is propagated by seed; its seeds are in the natural state of dormancy. Therefore, recognizing the factors affecting dormancy and creating optimal conditions for seed germination of this plant is necessary for the cultivation and reclamation of rangelands. This study was conducted with the aim of finding the best treatment for breaking the dormancy and improving seed germination under various chemical and physical treatments.
Materials and Methods: The experiment was carried out as a factorial based on a completely randomized design with four replications at the gene bank of cereal and legume Lab of Ilam University, 2017. The factors included two levels of scarification chemical (with and without sulfuric acid (H2SO4) for 10 minutes), three levels of stratification (control, moist chilling at +4 °C and dry chilling -20 °C), potassium nitrate in two levels (zero and 1% KNO3) and gibberellic acid in two levels (zero and 5 ppm GA3). Germination indices including germination percentage, germination rate, seedling and radicle length, seedling fresh weight and vigor index were measured.
Results: Initial assessment of vital indices in seed such as germination and primary growth showed that the simultaneous application of scarification by sulfuric acid and moist chilling at +4 °C has the most impact on removing dormancy and increasing germination percentage. The highest germination rate was observed in moist chilling at +4 °C, which was 32.19 percent more than that of the control treatment. Scarification by sulfuric acid reduced the mean germination time in moist chilling at +4 °C. Scarification by sulfuric acid increased the fresh weight of the seedling by 55.25 percent, compared with the control. Pre-treatments with potassium nitrate undre control conditions, moist chilling at +4 °C and dry chilling at -20 °C increased the fresh weight of seedlings, at 52.66, 30.94 and 17.18 percent, respectively. Application of potassium nitrate increased root length by about 60.7 percent, compared with control. The highest radicle length (78.71 mm) was obtained when the seed was treated with sulphuric acid with wet chilling at 4 ° C for two weeks, which was 30 percent higher than control. The highest seedling length (84.88 mm) was obtained in scarification with sulfuric acid, wet chilling, and potassium nitrate and gibberellic acid. The highest seed vigor index (61.85 %) was observed in the treatment of scarification with sulfuric acid under moist chilling, and pre-treatments of gibberellic acid and potassium nitrate.
Conclusions: In general, it can be concluded that seed dormancy of Astraglus gossypinus involves both physical and physiological dormancy. The best treatment for removing the dormancy of this species seems to be scarification with sulfuric acid for 10 minutes puls concentrated stratification in moist chilling at +4 °C for two weeks.
 
 
Highlights:
  1. Determination of the optimal seed dormancy techniques of white Astragalus for the purpose of increasing seed germination percentage.
  2. Comparison of the efficiency of different dormancy breaking techniques.
  3. The combined effect of sulfuric acid, chilling and priming with gibberellic acid and potassium nitrate on germination indices.

Marjan Diyanat, Pouya Sonboli-Hamedani, Fereidoon Ghasem-Khan Ghajar,
Volume 8, Issue 1 (9-2021)
Abstract

Extended Abstract
Introduction: Seed dormancy is the most important factor that prevents weed seed germination. Lack of simultaneous germination of weed seeds causes a number of problems in their control due to seed dormancy in the fields; therefore, weed seed dormancy is considered to be an undesirable trait for farmers. The aim of this study was to investigate the effect of magnetic field on seed dormancy elimination in some weed species.
Material and Methods: In order to study the effect of Magnetic field on germination and seedling growth of redroot pigweed (Amaranthus retroflexus), spring wild oat (Avena fatua) and common purslane (Portulaca oleraceae), a factorial experiment based on completely randomized design was conducted at the Ecology laboratory of Science Research Branch, Islamic Azad University in 2019. Factors consisted of dormancy breaking treatment at 8 levels (gibberellic acid 1000 mg/l for 20 minutes, gibberellic acid 2000 mg/l for 20 minutes, sulfuric acid for 5 minutes, sulfuric acid for 10 minutes, sulfuric acid for 20 minutes, nitrate potassium at 0.01 g/L, nitrate potassium at 0.05 g/L and control) and magnetic field at 4 levels (0, 25, 50 and 100 mT).
Results: Results showed that responses of three weed species to magnetic field were different. Magnetic field increased percentage of germination, fresh weight of plumule and length of plumule of redroot pigweed, so magnetic field at 100 mT was the best treatment for dormancy breaking. The highest germination percentage of wild oat was obtained in 0.01 mM potassium nitrate at 50 mT. The length plumule of wild oat increased significantly at 2000 mg/l gibberellic acid with increasing magnetic field level from zero to 25 mM. Nitrate potassium at 0.05 g/L was the best treatment for breaking the dormancy of common purslane. Magnetic field at 100 mT could increase percentage of germination of this weed.
Conclusion: In general, the results of this study showed that sulfuric acid treatment was not a suitable option for the removal of dormancy in the three weed species because of the elimination of seed embryos. Magnetic field treatment significantly increased the studied traits in all three species of redroot pigweed, spring wild oat and purslane. The interaction between dormancy breaking treatment and magnetic field was significant in many of the studied traits and the effect of dormancy breaking treatment was intensified by magnetic field. Therefore, the use of magnetic field treatment is recommended to increase the germination of these three species.
 
Highlights:
1- There is a positive and significant interaction between seed dormancy elimination treatments and magnetic field.
2- Sulfuric acid treatment is not a suitable option for breaking the dormancy of redroot pigweed, spring wild oat and purslane.

Mohammadreza Labbafi, Hamideh Khalaj, Maryam Delfani, Nasrin Qavami,
Volume 9, Issue 1 (9-2022)
Abstract

Extended Abstract
Introduction: Lavandula angustifolia L. is one of the most important plants belonging to Lamiaceae which has abundant use in traditional and pharmacological medicine. Lavender seed dormancy is one of the problems in producing seedlings which increases seed consumption. In this regard, an experiment was carried out to investigate different treatments for seed dormancy elimination of Lavender and measuring germination and growth indices.
Materials and Methods: An experiment was conducted in a completely randomized design with three replications at the Ecophysiology Laboratory of Karaj Institute of Medicinal Plants in 2018. The experiment consisted of 14 treatments on seed dormancy elimination. The treatments included the control, hormonal treatments (Gibberellic acid with 250, 500, 750 and 1000 mg/l concentrations) and Prechilling treatments (7, 14 and 21 days of refrigeration). The integrated treatments were 7 days refrigeration + 500 mg/l gibberellic acid, 14 days refrigeration + 500 mg/l gibberellic acid, 7 days refrigeration + 1000 mg/l gibberellic acid, 14 days refrigeration + 1000 mg/l gibberellic acid, 30 minutes at 40 ° C water + 14 days refrigeration, and 30 minutes at water 40 degrees +14 days refrigeration + 500 mg/l gibberellic acid.
Results: The results showed that the highest germination percentage (70.67%), germination rate (24.26%) and germination index (246) were achieved in 750 mg/l Gibberellic acid, and the highest epicotyl length (5.09 cm), seedling length (6.23 cm) and seedling fresh weight (0.57 gr) were produced with 500 mg/l Gibberellic acid. Also, the lowest mean germination time (MGT) (4.12s day) was obtained in 1000 mg/l Gibberellic acid treatment. Also, 7 days of refrigeration + gibberellic acid at 500 mg/l treatment had no significant difference with the other concentrations of gibberellin treatments. Therefore, low gibberellin concentration with 7 days of prechilling had the same effect as higher gibberellic acid concentrations. In addition, 14 days of refrigeration + 1000 mg/l gibberellic acid treatment and treatment of 30 min in water at 40 ° C +14 days prechilling + 500 mg/l gibberellic acid produced the lowest shoot (0.78, 0.82 cm), seedling height (0.99, 1.04 cm) and fresh weight (0.013, 0.01 gr) that showed the negative effects of increased prechilling time and water at 40 ° C,
Conclusion: It was finally found that the lavender seed dormancy type is physiologically non-deep and moderate and Gibberellic acid is a suitable substitute for prechilling. The best treatment was gibberellic acid with a concentration of 750 mg/l to break the dormancy of lavender seeds.

Highlights:
  1. Gibberellic acid is a good substitute for prechilling in seed dormancy elimination of lavender.
  2. Breaking the dormancy of the lavender seeds is necessary for producing seedlings from the seeds of this plant.

Zahra Heidari Sureshjani, Ghasem Karimzadeh, Sajad Rashidi Monfared,
Volume 9, Issue 1 (9-2022)
Abstract

Extended Abstract
Introduction: St. John’s wort is one of the most amazing and medicinal plants of interest worldwide, which is nowadays known as a certain cure for depression. However, the presence of dormancy and low seed germination is a barrier to the progress of its breeding programs. Despite the richness of the plant’s genetic resources, there are only a few studies reported on its propagation and maintenance in Iran, most of which do not mention the geographical origin of the used seeds or explants. The current study was carried out aiming to evaluate in vitro plant propagation of eight Iranian endemic populations of St. John’s wort seeds which belonged to different geographical origins, emphasizing seed dormancy phenomena.
Materials and Methods: Following the collection of eight populations of St. John’s wort (Hypericum perforatum L.) seeds from different geographical regions of Iran, the Murashige and Skoog culture media (common salt mixture as a control, MS improved with gibberellic acid and a modified combination of MS) was used in an effort to investigate the effect of culture medium as well as seed collection locations on the germination percentage of these populations.
Results: The results showed that the interaction between the seed collection locations and the culture medium on seed germination was significant at P<0.01. Besides, the effect of changing culture media on seed germination was significant in all populations at P<0.01, except for Meshkin-Shahr. In other words, the seeds collected from Meshkin-Shahr germinated easily as well as notably under in vitro conditions (97.3% on average), and there was no need either to modify the combination of MS medium or to use gibberellic acid for seed dormancy elimination. The seeds originated from Challus and Peresk had the lowest germination in the control medium (22.3%, on average). Seeds from Challus and Saqqez had better germination in the media enriched with gibberellic acid compared to the control and the modified MS media (88% and 65%, respectively). However, less than half of the Parvar seeds germinated in the MS medium improved with GA3, compared to the control. Cultivation of seeds obtained from Fereydunkenar in common MS medium also led to better germination than using GA3 and modifying the combination of medium with 95% and 99% confidence levels, respectively.
Conclusion: The results of the current study demonstrated that the observed difference in seed germination percentage is remarkable in the Iranian endemic St. John’s wort populations under in vitro conditions. Moreover, the variation among national populations was significant. Besides, the response of the seed populations originating from different locations varied with respect to the changes in the culture medium and in the different cases. This shows the considerable effect of the growth location of the maternal plant on the characteristics of the next generation seeds, especially the way they germinate. Hence, it is very important to pay attention to the seed’s origins in the studies and it is investigable.

Highlights:
  1. This is the first report on the in vitro seed dormancy elimination in the eight Iranian St. John’s wort populations.
  2. It was for the first time bringing up the geographical origins of seeds in the national germination studies on the St. John’s wort.
  3. It is a quite new method to use a modified combination of MS medium for seed dormancy elimination in the St. John’s wort.

Mansoor Barahouei, Seyyed Gholamreza Moosavi, Mohamad Javad Seghatoleslami, Reza Baradaran, Seyyed Mahdi Javadzadeh,
Volume 9, Issue 2 (3-2023)
Abstract

Extended Abstract
Introduction: Safflower is a plant that has been considered due to its high medicinal and nutritional value, especially in the extraction of edible oils in developed countries. Drought is one of the most important harmful factors in arid and semi-arid regions of the world that affects plant production. Modifiers play an important role in plant adaptation to stress conditions. Among these compounds are the hormone gibberellic acid and the antioxidant ascorbic acid, which increase plant tolerance to adverse environmental conditions. The present study investigated the effect of gibberellic acid and ascorbic acid on seed germination parameters and some enzymatic indices of safflower under drought stress.
Materials and Methods: The experiment was conducted as a factorial based on a completely randomized design with three replications in the Agricultural Science Laboratory of Iranshahr University in 2020. Experimental treatments included three levels of control (pretreatment with distilled water), pretreatment with gibberellic acid and ascorbic acid, and four levels of drought stress (0, -3, -6, and -9 bar). Drought stress was applied using polyethylene glycol 6000. Seed germination was carried out inside a germinator at 25 ° C for 14 days in darkness. Germination traits and enzymatic indices were measured using standard methods.
Results: The results of variance showed that most germination and growth indices of safflower seedlings decreased with increasing drought stress. Also, drought stress led to changes in the activity of antioxidant enzymes. Seed priming with gibberellic acid and ascorbic acid increased germination indices and seedling growth and improved enzymatic activity, including catalase, peroxidase, and superoxide dismutase in comparison with untreated seeds. Priming with gibberellic acid had a significant advantage. Seed priming in drought stress conditions has increased germination rate, protein content, and catalase, peroxidase, and ascorbic dismutase activity, respectively, compared to the control.
Conclusion: In general, seed priming of safflower using gibberellic acid changed the activity of antioxidant enzymes. These activities ultimately moderated the negative effects of drought stress and increased germination parameters.

Highlights:
  1. The role of gibberellic acid and ascorbic acid on safflower seed germination traits was investigated.
The effect of gibberellic acid and ascorbic acid on the activity of antioxidant enzymes and soluble protein during seed germination was investigated.

Hamideh Khalaj,
Volume 10, Issue 1 (9-2023)
Abstract

Extended Abstract
Introduction: Althaea officinalis L. is one of the most important plants of the Malvaceae family which is used in traditional medicine and as a drug to treat the disorders of digestive and respiratory systems. The fresh seeds of Althaea do not have a good growth potential. This experiment was performed to evaluate the different methods of seed dormancy breaking on the improvement of A. officinalis L. seed germination.
Materials and Methods: An experiment was conducted in a completely randomized design with three replications at the agricultural laboratory of Payame Noor University Tehran, Shahriar Center in 2017. The experimental treatments included 10 treatments (control, seed coat removal, seed coat removal + gibberellic acid (500 and 1000 ppm), seed coat removal + potassium nitrate (0.1 and 0.2%), seed coat removal + sulfuric acid (30 and 60 minutes), sulfuric acid (30 and 60 minutes).
Results: The results showed that the highest germination index with averages of 433.3 was observed in seed coat removal + 30- minutes of sulfuric acid treatment. The highest germination rate (44.7 seed/day) was observed in seed coat removal + 60-minute sulfuric acid treatment. The highest germination percentage (86.6%) was observed in seed coat removal+ 0.2% potassium nitrate treatment. Also, the highest mean germination time (20.2 day) was observed in both control and seeds coat removal treatments. The highest plumule and seedling length and fresh and dry weight were observed in seed coat removal + 30 and 60- minute sulfuric acid, and seed coat removal +0.2% potassium nitrate treatment, without significant difference. The highest radicle length was obtained in seed coat removal +30- minutes sulfuric acid treatment and seed coat removal + 0.2% potassium nitrate treatments.
Conclusion: Since all three sulfuric acid, potassium nitrate and gibberellic acid treatment along with seed coat removal treatment significantly affect the measured traits compared with control. It may be suggested that A. officinalis L. seed has a type of physical and physiological dormancy and seed dormancy breaking treatments (especially 30- minutes sulfuric acid) can be used to increase germination the fresh seeds of this plant.

Highlights:
  1. In A. officinalis plant, removal of seed coat using chemical treatments is very effective in applying seed dormancy treatments.
 Development of A. officinalis seed cultivation and propagation is possible by applying seed dormancy breaking methods.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.