Search published articles


Showing 4 results for Hasani

Leila Yari, Shahla Hashemi, Farshid Hasani,
Volume 1, Issue 1 ((Spring and Summer) 2014)
Abstract

The cultivation of sunflower (Helianthus annuus L.) has significantly increased in recent years, mainly due to the quality of its oil, which is useful for the human consumption and industrial purposes. In order to investigate the effect of different seed storage temperatures on seed quality of two sunflower cultivars (Euorfluor and Rcord), seeds were exposed to three storage temperatures (5, 20 and 20-30C°) for four months. Experimental units were arranged factorial manner in a completely randomized design with four replications. The effect of storage under 20C° was more effective in maintaining the vigor of sunflower seeds. The effect of storage at 5C° culminated in damage of vigor of sunflower seeds by increasing electrical conductivity (EC) and mean germination time. The effect of storage at 20-30C° (alternative temperature) brought about seedling growth by comparing with other treatments. This study indicated that best results for germination and vigor of sunflower seeds found for the seed of Euorflour cultivar in comparison with to Record cultivar under seeds storage temperature.

Mohammad Sedghi, Farzaneh Hasani, Raouf Seyed Sharifi,
Volume 1, Issue 2 ((Autumn & Winter) 2015)
Abstract

Application of zinc can improve the tolerance and resistance of plants especially sunflower to environmental stresses and be effective on kernel set and yield. To investigate the effects of zinc oxide nanoparticles on the length, effective period, the rate of kernel filling and kernel weight in sunflower cultivars, a factorial experiment based on randomized complete block design with three replications was conducted at the University of Mohaghegh Ardabili, Ardabil, Iran. Treatments were three sunflower cultivars as Aline 191, Aline 122 and Farrokh and three concentrations of nano zinc oxide including 0, 0.5 and 1 g lit-1 which sprayed at three stages. Results showed that interaction of cultivar and nano zinc oxide was significant on kernel filling rate, the effective period of kernel filling, maximum kernel weight and duration of kernel filling. The rate of filling and maximum kernel weight increased with 0.5 g lit-1 spraying of Nano zinc oxide in Aline 191 and 122, but in Farrokh cultivar was significantly reduced in comparison to the control. Also, no significant difference was found between 0, 0.5 and 1 g lit-1 of nano zinc oxide on kernel filling rate, effective kernel-filling period and duration in Farrokh cultivar. In conclusion, foliar application of zinc oxide nanoparticles led to the improvement of kernel weight and their filling parameters and the more appropriate response was observed in foreign cultivars for this treatment, while final kernel weight decreased in Farrokh cultivar. Therefore, it can be used 0.5 g lit-1 of nano zinc oxide for increasing grain yield in foreign cultivars of Aline.

Zeinab Pirsalami, Asad Masoumiasl, Hossein Shahsevand Hasani, Masoud Dehdari,
Volume 7, Issue 2 ((Autumn & Winter) 2021)
Abstract

Extended Abstract
Introduction: Salinity stress is one of the most important factors in decreasing crop yield. Crossing between cultivars and wild relatives is one of the methods to creating salinity tolerant plants that has led to the creation of new Tritipyrum cereals. Investigation of the effect of salinity stress at the germination stage is a reliable test in assessing salinity tolerance of many species; it reduces percentage and rate germination as well as decreases of root and shoots growth. This research aims to investigate the effects of different levels of salinity stress on germination of promising non-Iranian Tritipyrum lines and two wheat cultivars, Alvand (salinity tolerant) and Ghods (salinity sensitive).
Materials and Methods: The experiment was conducted in factorial based on the completely randomized design at the Faculty of Agriculture, Yasouj University. The first factor consisted of 13 Tritipyrum lines and two wheat cultivars and the second factor consisted of different salinity levels (240, 160, 80, 0 mM NaCl). After surface disinfection and seed culture in a petri dish, germination-related traits were measured until the 14th day.
Results: The results showed that by increasing salinity level, germination rate and percentage, root length, shoot length, dry and fresh root weight, and shoot dry weight decreased. The highest percentage (79.79%) and rate (75.74 seed per day) of germination in stress and non-stress conditions were related to the Az/b line. The germination percentage of the Alvand tolerant cultivar (55.59%) was higher than 5 Tritipyrum lines but less than the other 7 lines, its germination rate (53.69 seed per day) was higher than 10 Tritipyrum lines. The percentage and germination rate of sensitive cultivar Ghods (40.98 and 36.87 seed per day, respectively) were lower than all Tritipyrum lines. Under salinity stress, the La/b line had the highest root length (7.77 cm) which was even longer than the root length of the Alvand tolerant cultivar (4.9 cm). The highest root dry weight (0.027 g) under stress conditions was related to the Ka/b line and the lowest root dry weight (0.013 cm) was related to the Ghods cultivar. Among germination traits, the highest and the lowest heritability were related to shoot length under stress and non-stress conditions and root fresh weight (under non-stress conditions) and root length (under stress conditions), respectively. Genetic variance of shoot length and germination percentage in non-stress conditions was higher than stress conditions and selection under non-stress conditions had a higher yield than stress conditions. Clustering of genotypes by cluster analysis divided the genotypes into four groups under normal and salinity conditions. Under salinity stress, the salt-tolerant cultivar was placed alone in the fourth cluster. The salinity-sensitive cultivar was also in the third cluster with the St/b line. The rest of the Tritipyrum lines were clustered in the first and second clusters, with (Ka/b)(Cr/b)F6 hybrid line in the first cluster. Salt stress condition seems to have separated Qods from all Tritipyrum lines (except St/b), but under normal conditions, it did not indicate clustering accuracy of the studied genotypes.
Conclusion: The results of this study demonstrated salinity tolerance in the most simple and hybrid lines of this plant at the germination stage, among them (St/b)(Cr/b)F3, (Ka/b)(Cr/b)F6, and (Ka/b)(Cr/b)F3 and La(4B/4D)×(b) and the simple lines La/b, Az/b and St/b were better than others. Therefore, these selected lines can be considered in further complementary studies.
 

Highlights:
1. The studied plant is new and needs to be examined at the germination level before introducing.
2. Simple lines with the hybrid lines of this new plant have been studied that can show the effect of crosses.
3. Grouping of lines for tolerance or susceptibility is done solely based on germination traits.

Enayat Rezvani Khorshidi, Mohammad Reza Jazayeri, Leila Sadeghi, Mohammad Rahmani, Farshid Hasani, Bita Oskoee, Seied Hosein Jamali, Amirali Karimi,
Volume 10, Issue 1 ((Spring and Summer) 2023)
Abstract

Extended Abstract:
 Introduction: Production of high-quality seeds to stabilize crop yield is an important challenge for breeders. One of the most important answers to this challenge is to clarify the molecular mechanisms associated with seed vigor characteristics. Functional proteins of Cupin superfamily are among the molecules in signaling pathway. Previous research has shown that in maize, a storage protein similar to the functional Cupin superfamily protein called ZmGLP is effective in seed germination. However, in the previous experiments, suitable indicators were not used to assess seed vigor and its relationship with field establishment. So, it is needed to study the performance of ZmGLP in predicting field emergence to complete the previous research.
 Materials and Methods: An experiment was performed on 14 samples of commercial inbred maize lines. In this experiment, in addition to the laboratory evaluation of seed germination, field indices of physiological seed quality including the percentage of seedling emergence in the field, time to 50% seedling emergence, time to 90% seedling emergence, seedling dry weight, seedling height and coefficient of variation of seedling height was also assessed. In the polymerase chain reaction, two pairs of primers (CF / CR primers and IDF / IDR primers) were used to identify the DNA sequence of the Cupin.
Results: The results show that the seeds were different in terms of physiological quality. The lowest percentage of germination in laboratory was related to K1264/1, while the lowest physiological quality of seeds in field indices was observed in K1263/17. The molecular test confirmed the presence of the desired allele at the InDel9 site of vigor-related genes in the three samples of B73, K1264/1, and K1264/5-1, but no amplification band of the InDel9 site was observed in all K1263/17 seed samples. Due to the fact that line K1264/1, which had the lowest germination percentage in the laboratory, had an amplification band at this related site to vigor, it is not enough to rely on the results of the laboratory germination test to investigate the relationship between this gene and seed vigor. The field emergence test and seed vigor test that have a good prediction of field emergence must be used in these studies.
Conclusions: According to the results of this experiment, molecular tests with functional markers based on Indel9 can be used to accelerate the evaluation of vigor, especially when the breeder is breeding a new line or hybrid. It is a useful, rapid, and effective molecular method to predict seed emergence in the field and screen the lines to ensure the genetic strength of the germination of the lines, especially in the temperate germplasms of corn. Finally, it is necessary to determine the threshold of low vigor during seed quality investigation in different cultivars, and relationship between the presence or absence InDel9 site should be considered in future research.

Highlights:
1- The feasibility of using molecular markers to determine the seed vigor of corn lines in the field was studied and optimized for the first time.
2- The results of physiological quality assessment of seeds in the field for the studies related to the relationship between molecular markers and seed vigor were exploited for the first time.
3- The Indel9 site and molecular markers related to seed vigor in the field were introduced.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.