Extended Abstract
Introduction: Seeds are a good option for propagation and protection of medicinal plants. Although Seed dormancy is an adaptive strategy for wild medicinal plants, but it is considered as an undesirable trait in domestication and cultivation of them, need to be solved. Echinophora platyloba seed has dormancy despite its remarkable medicinal properties.
Materials and Methods: In order to break seed dormancy, three separate experiment including stratification, hormonal treatment and combination of both were performed. For stratification 10 samples of were placed in a wet bed at 5 ° C for 2, 4, 6, 8, 10, 12, 14 and 16 Week and were compared using a completely randomized design with three replications. For hormonal treatment, the seeds were placed in GA concentrations of 0, 500 and 1000 ppm for 24 hours and then transferred to germination conditions. However, since the breaking of dormancy did not occur, this experiment was not discussed any more. For combined application of hormone and stratification, seeds were placed at mentioned concentrations of gibberellin for 24 hours at 20 ° C and then gibberellin solutions were removed and the seed transmitted to 5 ° C and compared for 2, 4, 6, 8 weeks with a CRD factorial experiment with three replications. The first factor was concentration of gibberellin in three levels and the second factor was the duration of stratification in 4 levels.
Results: Stratification had a positive effect on seed dormancy breaking and 16 week chilling lead to highest germination percentage and rate and vigor indices. The combined application of hormonal treatments accelerated dormancy release and improved seed germination characteristics, which peaked at 8 weeks. 8-week stratification treatment at 5 ° C with 1000 ppm gibberellic acid was the best treatment to overcoming of dormancy in Echinophora-platyloba seeds.
Conclusion: It seems that seed dormancy of Echinophora seeds is physiological, which broke down by moist chilling and simultaneous application of stratification and gibberellin successfully. Although Gibberellin had no effect on dormancy break, it reduced the need for stratification. Combined application of them showed synergistic effects on dormancy release.
Highlights:
Extended abstract Introduction: The use of nanotechnology is increasing in many fields including agricultural sciences. Concurrently, the release of these particles into the environment is inevitable, which may have adverse effects on plants. Therefore, it is important to understand the interactions between nanoparticles and crops as an essential component of all agricultural ecosystems. In this regard, a study was conducted on the effects of nanoparticles on germination potential and initial growth of F2 seeds by cultivating soybean in soil containing copper oxide nanoparticles. Materials and Methods: To evaluate the nourishment effects of maternal soybean with copper compounds on its seedlings, two factorial experiments (in a growth chamber and pot) were conducted in a completely randomized design at the Faculty of Agriculture, Shahrekord University in 2021. Treatments in the maternal plant included different copper compounds (copper oxide nanoparticles with sizes of 25, 50 nm and copper chloride) and five concentrations of copper compounds (0, 50, 100, 200 and 500 mg/kg soil), and the seeds produced from these treatments were evaluated under controlled and pot conditions. Results: An increase in the concentration of copper chloride and copper oxide nanoparticle (25 nm) in maternal plants reduced the germination percentage (25 and 78%), radicle length (56 and 82%), radicle weight (35 and 81%), plumule length (19 and 71%), plumule weight (32 and 73%) and seedling vigor index (49 and 94%) of produced seeds, respectively. The evaluation of soybean seedlings nourished with different copper compounds also showed the nourishment with copper chloride and copper oxide nanoparticle (25 nm) significantly decreased the content of chlorophyll a (10 and 74%), chlorophyll b (38, 49%), carotenoids (136 and 145%), root length (27 and 61%), seedling height (31 and 58%), leaf area (44 and 64%), and shoot weight (34 and 64%) compared to the control, respectively. Conclusion: In general, it is concluded that the toxicity of copper compounds in the rhizosphere of the maternal plant for the produced seeds is directly related to the concentration. Therefore, the toxic effects are intensified when the maternal plant is nourished with copper oxide nanoparticles, and the seeds produced under these conditions have poor vigor. Highlights: 1. Nourishment of the maternal soybean plant with copper oxide nanoparticles reduces the seedling growth of the produced seeds. 2. Reducing the size of copper oxide nanoparticles has a more toxic effect on the germination of produced seeds. 3. The toxic effects of copper oxide nanoparticles continue until the seedling stage.
Page 1 from 1 |
© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research
Designed & Developed by : Yektaweb