Search published articles


Showing 6 results for Ranjbar

Hossein Sadeghi, Mohammad Delaviz, Hadi Pirasteh-Anosheh, Gholamhassan Ranjbar,
Volume 3, Issue 1 ((Spring and Summer) 2016)
Abstract

Germination is the first and the most stages for sainfoin (Onobrychis viciifolia) growth; which it has especially sensitivity to environmental stresses such as alkalinity. The current study was conducted to evaluate the effectiveness of seed pre-treatment methods on improving sainfoin tolerance to alkali stress in germination, early growth and its recovery as a factorial experiment based on a completely randomized design in College of Agriculture, Shiraz University in 2013. The first factor was four seed pre-treatment methods (seed with the pod, seed without the pod, pre-chilling of seed without pod and hydro-priming of seed without pod) and the second factor was five alkali stress levels (pH= 6.7, 7.9, 8.9, 9.8 and 10.7). Alkali stress levels were prepared using two neutral salts (Na₂SO4 and NaCl) and two alkaline salts (NaHCO3 and Na2CO3). The results showed that germination percentage was decreased as alkalinity (pH) levels were enhanced; so that, there were no germinated seeds in 9.8 and 10.7 treatments. Alkali stress reduced initial germination percentage (51.9%), final germination percentage (51.8%), plumule length (55.7%) and radicle length (72.2%). Under all alkalinity conditions, the lowest seed germination and seedling growth were observed in with pod seed, followed by pre-chilling treatments; while their highest were achieved in without pod seeds and hydro-priming treatments. The highest recovery was observed in without the pod, followed by hydro-primed seeds. Recovery was observed in Pre-chilled and with pod speeds up to 7.9 and in hydro-primed and without pod speeds up to 8.9.


Gholamhassan Ranjbar, Hossein Ghadiri,
Volume 3, Issue 2 ((Autumn & Winter) 2017)
Abstract

A controlled experiment was run to quantify emergence of Kochia indica under different temperature, salinity and seeding depth levels at Yazd National Salinity Research Center in 2013. Treatments were five day/night temperature regimes: 20/10, 25/15, 30/20, 35/25 and 40/30 °C, five salinity levels: 2, 6, 10, 14 and 18 dS m-1, and seeding depth on the surface (0 mm), 5, 10 and 15 mm. Final emergence percentage, emergence rate index and elapsed time (days) to reach 50% of the maximum emergence were measured. The results showed that the highest and lowest final emergence percentages were observed at 25/15°C and 40/30°C day/night, respectively. Final emergence percentages at salinity levels of 6, 10, 14 and 18 dS m-1were, respectively, 9, 22, 36 and 57% lower than 2 dS m-1. Final emergence percentages for 5, 10 and 15 mm seeding depths were, respectively, 30, 44 and 72% lower, as compared with the placement of seeds on the soil surface. Regression analysis showed that final emergence percentage linearly decreased with increase in salinity and seeding depth levels. However, elapsed time (days) to reach 50% of the maximum emergence (T50), increased as salinity and seeding depth increased, so that the highest T50 was obtained for 18 dS m-1 and seeding depth of 15 mm. Increase in salinity and seeding depth was associated with a significant decrease in emergence rate index. In addition, using a logistic regression equation, emergence rate of K. indica was quantified on each day after sowing for each temperature-salinity combination to predict the distribution range of the plant in these situations.
 


Mehri Khesht Zar, Mehran Sharafi Zad, Jafar Ghasemi Ranjbar,
Volume 4, Issue 1 ((Spring and Summer) 2017)
Abstract

To investigate the role of seed size on maize germination characteristics, an experiment was conducted in 2014 in the Laboratory of Registration and Certification of Seeds and Plants, Khuzestan Branch. Treatments included three levels of seed size (control (mixed), large and small) and hybrids at three levels (KSC704, Karun and Mobin). The results of these experiments showed that the hybrid had a significant impact on germination percentage, the rate of germination, vigor index, root and shoot length and dry weight of seedling. In addition, the highest germination (94.3%), the rate of germination (8.4 seeds per day), vigor index (37.6), shoot length (21 cm), root fresh weight (3.1 gr) and dry weight of seedlings (0.59 g) affected by seed size belonged to the Karun hybrid. Generally speaking, in terms of germination and seedling growth, there were differences among the three groups of maize seeds. Out of the hybrids scrutinized, Karun hybrid was a better one in terms of germination and growth of seedlings.

Highlights:
  1.  Due to higher storage capacity, the use of large seeds brings about increases in the seedling germination rate and their establishment in the field
  2. The use of large seeds with more seed vigor decreases competition between seedlings and reduces vapor from the field.

Nafise Taghizadeh, Gholamali Ranjbar, Ghorbanali Nematzadeh, Mohammadreza Ramzanimoghdam,
Volume 4, Issue 2 ((Autumn & Winter) 2018)
Abstract

Salinity is one of the most important factors limiting agricultural production. Cotton, as an oil-fiber plant, is one of the most important industrial plants and is sensitive to salinity, especially at germination and seedling stages. Therefore, in this study, 14 allotetraploid varieties of commercial and local cotton were selected. The study was carried out as factorial with a completely randomized design and three three replications, using the sandwich method. Germination tests were performed at three salinity levels of 0, 8 and 16 ds.m-1. Afterwards, root and shoot length, fresh and dry weight of root and shoot, germination percentage, allometric coefficient, seedling water percentage and seed vigor index were measured and stress tolerance indices were calculated based on yield (seedling dry weight) in stress and non-stress conditions. Given these indices, all cultivars were aalyzed at two levels of 8 and 16ds.m-1, using principal component analysis and biplot diagrams were drawn. Finally, the dendrogram classification of genotypes was plotted based on STI indices (stress tolerance index), SSI (stress susceptibility index), and the performance (dry weight plantlet) in stress and non-stress conditions. The result of variance analysis for genotype, salinity and salinity×genotype demonstrated that dry weight root, dry weight shoot, fresh weight root, stem length, vigor index seedling, allometric coefficient, dry weight seedling, and length seedling were significant in p-value 0.01, and fresh weight shoot, length root were significant in p-value 0.05. Clustering and the biplot of the genotypes based on STI and SSI indices at salinity levels of 8 and 16 ds.m-1 indicated that the Sepid and Giza genotypes were tolerant and that the Kashmar genotype was sensitive to salt levels at germination stage.
  
Highlights:
  1. The reaction of the cotton cultivars studied was different to levels of salinity stress.
  2. An increase in salt stress caused a significant reduction in the germination characteristics of cultivars of cotton studied.
  3. Bi-plot analysis and clustering based on STI and SSI indices turned out to be a suitable method for clustering cotton cultivars.

Peyman Aligholizadeh Moghaddam, Gholam Ali Ranjbar, Hammid Najafi-Zarrini, Hosein Shahbazi,
Volume 7, Issue 2 ((Autumn & Winter) 2021)
Abstract

Extended Abstract
Introduction: Germination is one of the most important stages of plant growth that determines the durability, establishment and final yield of crops and in regions that due to drought conditions the growth of plant encounters with problem, improving germination traits count as one of the important breeding strategies. The present study was designed to determine the effect of different levels of osmotic stress on germination and seedling traits of some bread wheat cultivars cultivated in cold regions of Iran.
Materials and Methods: In order to investigate the effect of different levels of osmotic stress on germination characteristics of bread wheat cultivars cultivated in cold regions of Iran, a factorial experiment was conducted based on a completely randomized design with 3 replications in which, the first factor consisted of 20 bread wheat cultivars (including rain fed cultivars as well as end-of-season water stress tolerant varieties) and the second factor consisted of 3 levels of osmotic stress (non-stress, -3 and -6 bar stress). Seedling traits such as coleoptile length, shoot length, shoot weight, root length, root weight, root / shoot ratio, root growth angle, germination speed and the germination stress index (GSI) were evaluated. For the experiment concerning the yield comparison, 20 cultivars mentioned above were compared under non-stress and terminal drought stress conditions.
 
Results: The results showed that the ratio of root/shoot length and weight and shoot weight had the highest sensitivity and the lowest number of roots to osmotic stress. Increasing root length as root weight decreased with increasing stress showed that roots became longer and thinner due to stress. Among the genotypes, Saein, Zare, Pishgam, Sadra, Baran and Mihan had desirable traits and CrossMV17, Homa, Orum and Cross Azar2 had no desirable germination traits. In non-stress conditions, 11 genotypes had high coleoptile length including Hashtrood, Azar 2, Saein, CD62-6, CD91-12, Mihan, Baran, Heydari, Homa, Cross Azar 2 and Zare genotypes. At 3 bar stress, 11 genotypes had the highest coleoptile length, with the highest values being assigned to Hashtrood, Heidari and Saein. At 6 bar stress, CD91-12 and CD62-6 lines, Hashtrood, Homa, Pishgam, and Zare had the highest coleoptile length. At 3 bar stress cross Azar 2, Saein, CD62-6, Gascogen and HD2985 demonstrated the highest germination rate. Furthermore, Cross Azar2, HD2985, Gascogen, CD62-6 and Saein led to the best results, respectively. However, in both 3 and 6 bar stress conditions Saein, Cross Azar2, CD62-6 and HD2985 were superior for germination stress index (GSI). For grain yield under normal conditions, Gascogen, Heidari, Pishgam, Orum and Zarrineh had the highest yield and Baran, HD2985, C-88-4, C-9011 and Cross Azar2 were placed next. Under stress conditions Baran, Gascogen, HD2985, Cross Azar2, Heidari and Zarrineh consisted the highest performance. According to STI index Gascogen, Heidari, HD2985 and Zarrineh were the most tolerant genotypes to drought stress. Cluster analysis grouped the studied genotypes into 2 clusters, the first cluster comprising 13 genotypes Heidari, Mihan, HD2985, Baran, Pishgam, Hashtrood, Cross Azar 2, CD62-6, Gascogen, Azar 2, Saein, Sadra and Zare. The second cluster consisted of 7 genotypes C-88-4, Zarineh, C-90-11, Orum, CD91-12, CrossMV17 and Homa. Genotypes of cluster 1 were superior in terms of germination traits such as shoot length, coleoptile length, root length and root weight and reduced root/shoot ratio.
Conclusion: Significant differences in all studied traits among genotypes indicated sufficient genetic variation for selection in germination traits. Results showed that Saein, Zare, Pishgam, Sadra, Baran and Mihan cultivars had desirable germination traits and were superior to other genotypes.

Highlights:
1- The tested genotypes are either newly named or advanced lines and have not been studied for germination traits.
2-The growth angle trait of seed roots through filter paper has received little attention in studies.

Mohammad Hossein Banakar, Hamzeh Amiri, Gholam Hassan Ranjbar, Mohammad Raza Sarafraz Ardakani,
Volume 8, Issue 2 ((Autumn & Winter) 2022)
Abstract

Extended Abstract
Introduction: Fenugreek, is a medicinal plant that has been considered as a salt tolerant crop. This research was conducted to investigate the effects of salt stress on seedling emergence characteristics and determination of the salt tolerance threshold, declivity of emergence and salt tolerance index of some fenugreek ecotypes.
Material and Methods: Seeds of five ecotypes (Ardestani, Isfahani, hendi, Mashhadi, Neyrizi) were subjected to seven levels of salinity (0.5, 3, 6, 9, 12, 15 and 18 dS/m) in a factorial experiment based on a completely randomized design with three replications. In this research, experimental models (linear, sigmoidal, exponential and multi-component) were used.
Results: Results showed that increasing levels of salinity decreased seedling emergence percentage and rate. In Ardestani and Isfahani ecotypes, increase of salinity up to 3 dS/m had no effect on seedling emergence percentage and thereafter, decreased it, significantly. The maximum seedling emergence percentage (94.62%) belonged to Hendi in control treatment. Hendi ecotype had also the highest emergence percentage (25.81%) at 18 dS/m. Although the highest seedling emergence rate (5.93 per day) belonged to Mashhadi ecotype in control treatment, it didn’t show any significant difference to Hendi, Neyrizi and Isfahani ecotypes. In Ardestani, Mashhadi and Neyrizi ecotypes, seedling length decreased significantly with increasing salinity, but this decrease was not significant in Isfahani ecotype between salinities of 3 and 6 dS/m and also 12 and 15 dS/m. In Hendi ecotype, seedling length at 3 dS/m was similar to control, but higher salinities caused a significant reduction. The maximum value of seedling vigor index (20.44) belonged to Mashhadi and Neyrizi ecotypes in control treatment and Ardestani ecotype had the lowest one (0.39) at 18 dS/m. Results showed that seedling dry weight was first unchanged up to salinity level of 3 dS/m and then gradually decreased with increasing salinity. In Hendi and Neyrizi ecotypes, applying salinities higher than 6 dS/m, gradually decreased seedling dry weight. The salt tolerance threshold of fenugreek for Ardestani, Isfahani, Hindi, Mashhadi and Neyrizi ecotypes was 4.69, 4.90, 7.83, 1.69 and 1.57 dS/m, respectively. Thus, the highest salt tolerance threshold (7.83 dS/m) and the declivity of emergence percentage (7.55%) was obtained from Hendi ecotype and the lowest one from Neyrizi ecotype (1.57 and 4.63 dS/m, respectively). Results of nonlinear models showed that the highest salinity in which  50 percent of seedlings emerged was obtained in Hendi ecotype (14.24 dS/m).
Conclusion: Based on the results, comparing the salt tolerance index of fenugreek ecotypes and also evaluating of some experimental models showed that Hendi ecotype may be introduced as the most tolerant ecotype to salinity stress at the emergence stage to exploit saline soil and water resources.
 
Highlights:
  1. Different fenugreek ecotypes in terms of salinity tolerance at seedling emergence stage were compared using some experimental models.
  2. The salt tolerance threshold, declivity of emergence and also salt tolerance index was reported for some fenugreek ecotypes.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.