Search published articles


Showing 2 results for Gholami

Hassan Gholami, Roohollah Abdolshahi, Mehdi Mohayeji, Mohsen Esmaeilizadeh-Moghadam,
Volume 9, Issue 2 ((Autumn & Winter) 2023)
Abstract

Extended Abstract
Introduction: Wheat coleoptile protects the plumule and the first leaf so they can move from the embryo to the soil surface. Coleoptile is essential for plant establishment. Cultivars with longer coleoptiles and mesocotyls are sown deeper and are more successful under drought stress conditions. However, there is not much information about their genetics. The objective of the present study was to evaluate the coleoptile and mesocotyl of Iranian, overseas and the lines developed as a part of Shahid Bahonar University breeding program, and estimate of genetic parameters of these traits.
 Materials and Methods: In this research, 30 bread wheat genotypes originated from Iran, CIMMYT, ICARDA, USA, and Australia and five lines from Shahid Bahonar University of Kerman breeding programs were sown at a 10 cm depth of soil in the research field of Shahid Bahonar University in a randomized complete block design with seven replications. Each plot consisted of three rows with two meters long and a 5 cm intra-row spacing. At harvest, the plants were gently removed from the soil, and after removing the soil from the root area, the roots were washed. In this study, coleoptile and mesocotyl length, number of seminal roots, root length, root and shoot dry weight were measured.
Results: Coleoptile and mesocotyl are important traits for increasing drought tolerance in bread wheat. In the present research, mesocotyl length varied from 5.20 for Excalibur to 2.08 for Zagros, and showed a high heritability (0.48) and response to selection (11.61%). Furthermore, this trait had a positive significant correlation with coleoptile length (r=0.53**), root weight (r=0.38*) and shoot weight (r=0.36*). Seminal and nodal root number had the highest (0.59), while root length had the lowest (0.13) narrow-sense heritability. Overall, suitable cultivars for rain-fed conditions had higher coleoptile and mesocotyl than the others. Breeding lines in Shahid Bahonar University of Kerman suitable for rain-fed conditions had longer coleoptile and mesocotyl lengths. Root and shoot dry weight had a significant positive correlation (r=0.82**).
Conclusions: In general, breeding programs to increase grain yield differ under rain-fed and irrigated conditions. In wheat breeding programs under rain-fed conditions, special attention should be paid to coleoptile and mesocotyl traits. These traits were not influenced by the plant growth habit.

Highlights:
  1. Mesocotyl of the Iranian cultivars was evaluated for the first time.
  2. Breeding lines developed by Shahid Bahonar University of Kerman suitable for rain-fed had appropriate coleoptiles and mesocotyls.
  3. Coleoptile and mesocotyl had a significant and positive correlation.

Safiye Arab, Mehdi Baradaran Firouzabadi, Ahmad Gholami, Mostafa Haydari,
Volume 9, Issue 2 ((Autumn & Winter) 2023)
Abstract

Extended Abstract
Introduction: Seed aging is a phenomenon that occurs during the life of any seed. Changes that occur during aging affect seed quality. Through the process of aging, seed vigor is the first trait of the seed quality that decreases, followed by a decrease in germination capacity, seedling growth and establishment. Hence, one way to stimulate germination and increase the establishment of seedlings from aging seeds is seed pre-treatment using different materials such as brown seaweed extract. The aim of this study was to investigate the effect of seaweed extract pretreatment on germination traits and heterotrophic growth of un-aged and aged soybean seeds.
Materials and Methods: The experiment was designed and implemented at a laboratory in the faculty of agriculture of Shahrood University of Technology in 2019. Treatments included seed aging at two levels (un-aged seeds and aged seeds) and pretreatment with seaweed extract at seven levels (zero, distilled water, 0.1, 0.2, 0.3, 0.4 and 0.5 %). The experiment was carried out as a factorial in a completely randomized design (CRD) with three replications in the germinator environment. The seeds were aged by being placed at 41°C and 95% relative humidity for 72 hours. Seed pretreatment seaweed extract was done for 6 hours in accordance with the principles of seed aeration.
Results: Aging reduced germination percentage and germination rate, allometric growth ratio, seedling length vigor index, seed reserves use efficiency and seed vigor index. Malondialdehyde content and electrical conductivity of aged seeds were 37.68% and 38.32% higher than un-aged seeds respectively. Seed pretreatment with 0.1, 0.2 and 0.3% of seaweed extract significantly increased germination rate, germination index and seed reserves use efficiency. Slicing interactions of aging and seaweed extract showed that seed pretreatment with 0.1, 0.2 and 0.3% of seaweed extract significantly increased germination rate and germination index in un-age seeds. Pretreatment of aged seeds with 0.1, 0.2 and 0.3% seaweed extract increased germination percentage by 8.73%, 8% and 15% compared to the control (aged seeds without pretreatment), respectively. The use of distilled water and all levels of seaweed extract in this study increased the seed vigor index and decreased the electrical conductivity. The amount of malondialdehyde in aged seeds was reduced by using all levels of seaweed extract. The use of 0.2, 0.3, 0.4 and 0.5% of the extract increased the amount of seed reserves use rate and fraction of seed reserves mobilization in aged seeds.
Conclusions: Finally, in the scope of this research between the concentrations used, the concentration of 0.3% seaweed extract was better than the others. It can also be suggested that the use of seaweed extract as a seed pretreatment improves the effects of seed aging on soybeans.

Highlights:
1-The effect of pretreatment with seaweed extract with concentrations of 0.1 to 0.5% on un-aged and aged soybean seeds was investigated for the first time.
2-Using a concentration of 0.3% seaweed extract for the pretreatment of soybean seeds was introduced as the best concentration.
3- Seaweed extract was introduced as an important antioxidant to improve physiological traits in soybean seeds.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.