The present study sought to evaluate the effect of different temperatures on germination and to determine cardinal temperatures (i.e., base, optimum and maximum) of Secale mountanum at temperatures of 3, 5, 10, 15, 20, 25, 30 and 35oC. Three nonlinear regression models (i.e., segmented, dent-like and beta) were used for quantifying the response of germination rate to temperature. The results showed that in addition to germination percentage, the temperature has a significant impact on germination rate. Given the root mean square of errors (RMSE) of germination time, the coefficient of determination (R2), the simple linear regression coefficients a and b, and the relationship between the observed and the predicted germination rates, the best models for determination of cardinal temperatures of Secale mountanum were dent-like and beta models. Base, optimum and maximum temperatures were estimated to be about 2.70 to 3.17, 21.27 to 30.00 and 35.00 to 35.05°C, respectively for the dent-like model. However, given the high value of SE for temperature base and a negative estimate of the base temperature of the beta model, one can report the dent-like model as the right model. Therefore, by using the dent-like model and the estimated parameters, it is possible to use this model for predicting germination.
Results: The results of the current experimental study showed that temperature, priming and temperature interaction with priming had a significant effect on all the traits studied. The highest percentage and rate of germination were observed at 18 °C and priming with Pota Barvar 2. The results also showed that planting date had a significant effect on all the traits studied in the field experiment. Priming showed a significant difference only in stem fresh weight. The interaction effect of priming and planting date was not significant for the traits studied. The highest germination percentage was obtained on April 15’s planting date. By planting later than March 25 to 15 April, a decrease of 74% was observed in the rate of germination. Among priming treatments, the combination of Zinc Sulfate and Humic acid showed a significant superiority, compared with other treatments.
Conclusion: The findigns suggest that due to the high sensitivity of seed germination of sour tea at low temperatures, the planting date in each area should be carefully chosen so that it does not coincide with temperatures below 18 °C.
Extended abstract
Introduction: Velvetleaf is one of the most important weeds of cotton, corn, tomato, and soybean fields. Certainly, knowledge of weed seed response to environmental factors (light and temperature) is essential for better understanding the germination mechanism and establishment patterns of weeds community. The present study aimed to evaluate the interaction between light regimes and alternate temperature on the seed germination of velvetleaf.
Materials and Methods: The experiment was conducted in 2015 at the plant physiology laboratory of Bojnourd Branch, IAU. This study was performed as a factorial experiment based on a completely randomized design (CRD) with four replications. The treatments were temperature regimes at four levels (constant temperatures 25°C, alternating temperatures 25-15, 30-20 and 35-25°C) and photoperiod treatments at three levels (continuous darkness, 12-12 light and dark and 16-8 light and dark). Germination percentage, germination rate, germination uniformity, time to 10% germination, and time to 90% germination were evaluated by the Germin program.
Results: The results showed that all traits were affected by temperature and light. Velvetleaf seeds germinated better in the presence of light and alternating temperature. The percentage and rate of germination increased as temperature rised to 30°c and then decreased. However, seed reaction to the night temperature was higher than that of the day temperature. The highest germination percent (98 percent) was achieved under alternating temperature 25-15°C with 12-12h light-dark. In this study, the lowest time required for 10% and 90% germination and highest germination uniformity were observed under alternating temperatures 30-20°C in darkness.
Conclusion: According to the results of this experiment, velvetleaf seeds are able to germinate in a wide range of light and temperature conditions, although they germinate better in the presence of light and alternate temperatures. Therefore, plowing with a moldboard plow can stimulate germination and drain the soil seed bank.
Highlights:
1- Since light stimulates the germination of velvetleaf seeds, so no-tillage system is able to control this weed.
2- Increasing the environment temperature reduces the chance of germination of velvetleaf seeds.
Extended Abstract
Introduction: Notobasis (Syrian Thistle (has been introduced as a weed - medicinal plant. In Khuzestan province, the presence of Notobasis is abundant in cereal fields, especially field margins. For successful weed control, knowledge of weed biology and ecology (temperature, salinity and drought stresses) plays a key role in population dynamics of weeds and weed management. Therefore, the study aimed to evaluate Syrian Thistle response to temperature, salinity and drought, as well as to determine the cardinal temperature based on segmented, beta-four-parameter and dent-like models.
Materials and Methods: To investigate the effect of temperature (5, 10, 15, 20, 25, 30, 35 and 40 °C), salinity (zero, 50, 100, 150, 200, 250 and 300 mM) and drought stress (zero, 2) -0.0, -0.4, -0.6, -0.8, -1, -1.2 and -1.4 MPa). Three separate experiments were conducted in 2019 at agricultural science and natural resources university of Khuzestan at the laboratory of weed science with 6 replications. In each Petri dish, 25 seeds were placed and 7 ml of solution was added. In salinity and drought stresses experiments, sodium chloride solution and polyethylene glycol 6000 were used.
Results: Germination of Notobasis at temperatures of 5-30°C was more than 90%, and germination percent decreased to 24% as the temperature increased to 35°C, Based on three models segmented, beta 4 parameter and Dent-like, the Base temperature was estimated 2.95, 2.01 and 0.67°C respectively. Also, the optimum temperature in two models (segmented and beta parameter) was obtained 22.26 and 23.40°C respectively. Ceiling temperature was predicted 40.57, 39.75 and 40.03°C in three models (segmented, beta 4 parameter and Dent- like). Salinity required to reduce 50% of germination percentage, germination rate, seedling length and seedling fresh weight were 152, 85, 151 and 127 mM. 50% reduction of traits such as germination percent, germination rate, seedling length and seedling fresh weight were -0.81, -0.41, -0.43 and -0.45 MPa of drought stress respectively.
Conclusion: The results indicated that Notobasis had germination in a wide range of temperatures (5-35°C). In response to environmental stress, Notobasis have been identified as a weed resistant to salinity and drought stresses. Therefore, the presence of this weed in saline fields and arid areas is not unexpected.
Highlights:
1-To determine of cardinal temperature of Notobasis based on different models.
2-To evaluate germination ecology of Notobasis to environmental factors (temperature, salinity and drought stress) as the first report.
Extended Abstract
Introduction: A large number of experimental evidence indicates the positive effect of irradiating the seed with ultrasonic waves; so that irradiation causes the production of a more vigorous seedling. Conversely, inappropriate intensity and duration of irradiation can impose deleterious effects on seedlings by damaging the enzymatic activity. There are complex inter-and intra-relations between irradiation components (pre-soaking duration, temperature, and duration of irradiation) and response variables [seedling dry weight (SDW) and percent of abnormal seedlings (PAS)]. Therefore the balance values of the irradiation components cannot be precisely obtained by mean comparison. This study aimed to optimize (finding the balance values of) irradiation components for increased SDW, but diminished PAS of mung bean, using an artificial neural network.
Materials and Methods: A factorial experiment was conducted based on a completely randomized design with three replications. The factors were six pre-soaking durations (2, 4, 6, 8, 10, and 12 hours), 5 irradiation durations (0, 3, 6, 9 and 12 minutes), and 4 irradiation temperatures (17, 22, 27, and 32 oC). The 25 seeds were chosen for each petri dish. The multi-layer perceptron neural network was used to quantify the relations between variables; the experimental factors were used as the input (regressors), and PAS and SDW as the output of the model (response variables).
Results: The analysis of variance results indicated that the simple and interactive effects of factors were significant on PAS and SDW. The structure 3:3:2 of the neural network, which is based on Secant Hyperbolic function, was suitable. The SDW and PAS were negligibly different for the contribution of the factors in determining their changes. In terms of relative contribution, the factors ranked from higher to lower as irradiation duration, irradiation temperature, and pre-soaking duration. The optimized values of components of irradiation by the neural network were irradiation temperature of 17.96 oC, irradiation duration of 5.3 minutes, and pre-soaking duration of 11.25 hours. For these components, SDW was 27% higher, and PAS tended to be 0.6% lower, compared to the best component combination gotten by mean comparison.
Conclusion: Due to the highly strong interaction of irradiation components on seedling growth, the effect of component (s) tends to be changed intensively with changing the quantity of each component. In terms of finding the best combination of irradiation components, the neural network was more efficient than the mean comparison. Therefore, the neural network could be used as a complementary procedure in such investigations.
Highlights:
1- Irradiation components including irradiation duration and temperature, and pre-soaking duration affected seedling growth.
2- Inappropriate irradiation components diminished seedling growth to the below of no-irradiation conditions.
3- The optimum (balanced) levels of irradiation components increased seedling growth remarkably.
© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research
Designed & Developed by : Yektaweb