Search published articles


Showing 32 results for Stress

Rahim Tarbali, Ali Asghar Aliloo, Manouchehr Farjami Nejad,
Volume 7, Issue 2 (3-2021)
Abstract

Extended Abstract
Introduction: The weed invasion is one of the main yield-reducing factors in crops. They are potent competitors on vital resources which limits the availability of the resources for crops. Allelopathy is one of the weeds' abilities that commonly with inhibitory influences, affects plant communities' behavior. Therefore, the evaluation of these compounds' effects is important on crop plants. Also, the identification of allelopathic plants and their bioactive compounds can be a suitable approach to weed management. Thus, the aim of this study was the evaluation of the allelopathic potential of C. falcate on germination indices of wheat seeds and the mode of action of the extract on some enzyme activities. Furthermore, secondary metabolites in methanolic root extract were identified and reported.
Materials and methods: Germination and seedling experiments of Triticum aestivum var. Sardary seeds were tested by 0, 5%, 10%, 15%, and 20% concentrations of C. falcata root extracts based on CRD with four replications at the research laboratory of Maragheh University during 2018-19. Also, the influence of the extract was studied on enzyme activities of alpha-amylase, catalase, peroxidase, superoxide dismutase, and polyphenol oxidase. Furthermore, chemical compounds of the root methanolic extract identified by GC/MS instruments.
Results: Germination percentage and germination rate decreased significantly with the increase in the concentration of the extract, and germination stopped at concentrations above 15%. The results of seedling growth showed severe inhibitory effects of the extract on radicle and shoot organs of wheat seedlings that associated with reducing of the lengths and weights of the organs, and consequently, the vigor of seedling declined. The extract significantly reduced the activity of alpha-amylase, however, the activities of antioxidant enzymes first increased at low and medium concentrations but at high concentrations, the activities declined. The phytochemical analysis identified 62 compounds in the root of this plant that Octadecatrienal, Dihydro-4H-pyrazolo [3, 4-d] pyrimidin-4-one, Hexadecanoic acid, Hexadecanoic acid, 2-hydroxy-1 (hydroxymethyl) ethyl ester, Isopropyl isothiocyanate, and Cyclohexanone could be effective compounds on seed germination.
Conclusion: C. falcata had a very strong inhibitory effect on the seed viability and seed vigor of the wheat seeds. According to the results, the mode of action of the allelopathic compounds is induced by induction of oxidative stress and inhibition of seed reserves remobilization during germination. The high sensitivity of alpha-amylase activity to allelochemicals was detected in this experiment. The decrease in the activity of all studied enzymes at high concentrations of C. falcata root extract was also significant. Stearic acid and palmitic acid derivatives accounted for about 30% of the compounds, which are very likely to interfere with the activity of the enzymes.

 Highlights:
  1. Allelopathy effects of C. falcata root extract on germination indices of wheat were studied.
  2. Chemical compounds identified were in methanol extract of the plant roots of C. falcate.
  3. Oxidative stress is induced by the allelochemicals of C. falcata.

Amin Haghighi, Yazdan Izady, Miad Haji Mahmoudi, Seyed Amir Moosavi,
Volume 7, Issue 2 (3-2021)
Abstract

Extended Abstract
Introduction: Seed germination and seedling emergence depend on the genetics of plant species and are also influenced by environmental factors. Genetics and nutritional status of the maternal plant, maturity stage at a time of harvest, and environmental factors such as temperature, salinity, drought, and soil fertility influence seed germination. Seed vigor as the main parameter of seed quality decreases due to accelerated aging and storage. The objective of this study was to evaluate the response of accelerated aged Chia seed to different levels of salinity stress.
Material and Methods: Two-way factorial experiment with experimental factors, including five levels of seed accelerated aging durations (0, 24, 48, 72, 96 h) and six levels of salinity stress (0, 50, 100, 150, 200, and 250 mM) was arranged based on a complete randomized block design with three replications. The experiment was conducted at seed technology laboratory Khuzestan Agricultural Sciences and Natural Resources, University of Khuzestan, in 2019.
Results: Results of analysis of variance revealed that the effect of seed accelerating aging, salinity stress, and interaction effects of both factors on all measured germination traits were significant (p<0.01). The best pattern of seed germination was evaluated using three-parameter sigmoid models (logistic, Gompertz, and sigmoidal) and two polynomial models (quadratic and cubic), then the performance of all models was compared using (R2adj), root square of the mean (RMSE) and corrected Akaike index (AICc). Results showed that at accelerated aging duration, models' performance to describe Chia seed germination response varied at different levels of salinity stress. At no aging and 72h of accelerated aging treatments, the sigmoidal model exhibited the best fit on final seed germination, whereas for the other levels of accelerated aging, Gompertz exhibited the best fit. Based on the output of the sigmoidal model, for no aging and 72 hours of accelerated aging, 50% of seed germination was declined at 171.7 and 76.9 mM, respectively, and based on the results of the Gompertz model, after 24 and 48 h of accelerated aging, seed germination declined to 50% at 163.8 and 129.6 mM. Results obtained from fitting polynomial models on seed germination showed that the cubic model provides reasonable descriptions for studied traits such as seed vigor.
Conclusion: Chia seed germination was sensitive to salinity and accelerated aging treatments. At no aging condition, Chia seeds tolerate salinity stress up to 200 mM and were able to germinate. By increasing aging durations, seed germination declined dramatically at all salinity levels and after 96 hours of aging, there was no seed germination at 150 mM.

 
Highlights:
1- The best nonlinear model to study accelerated Chia seed response to salinity stress was selected using the model selection criterion.
2- Chia seed germination threshold to salinity stress was determined for not- aged and aged seeds.

Mahnaz Mansouri, Ali Moradi, Hamidreza Balouchi, Elias Soltani,
Volume 8, Issue 1 (9-2021)
Abstract

Extended abstract
Introduction: Seed is the most important sexual reproductive factor in plants that plays an important role in transmitting hereditary characteristics, plant distribution, and establishment in different regions. Seed germination as one of the most important and complex stages in the life cycle of plants is affected by genetic and environmental factors. Drought stress is one of the main barriers of crop plants and trees, production in many parts of the world, especially in arid and semi-arid regions such as Iran. The purpose of this study was to investigate the effect of drought stress on biochemical and seed germination indices of different seed lot of Ziziphus spina–christi as suitable medicinal species for controlling soil erosion in arid regions.
Materials and Methods: This experiment was conducted as a factorial based on a completely randomized design with four replications at the Seed Science and Technology Laboratory of Yasouj University in 2018. Experimental factors included Ziziphus spina–Christi seeds collected from the regions of Minab, Kazeroon, Masjed Soleiman, and Dehdasht and five water potentials including zero, -2, -4, -6, and -8 bar.
Results: In the present study, the effect of osmotic potential, seed lot, and their interaction were significant in each seed lot on germination (germination percentage, germination rate, seedling length, allometric index, longitudinal vigor) and biochemical (hydrogen peroxide, soluble protein content, Proline, catalase, and ascorbate peroxidase) indices of Ziziphus spina–christi. The results showed that except for allometric index response of all studied germination traits to osmotic potential was decreasing, Also with increasing osmotic potential, seed soluble protein was decreased and the amount of proline and activity of catalase and ascorbate peroxidase increased. With increasing osmotic stress, the root length was significantly increased, which increased the allometric coefficient of the seedling.
Conclusion: Germination and biochemical indices of seeds of all seedlots had significant changes with the reduction of osmotic potential and the reduction of osmotic potential was associated with reduced germination and plant establishment capability. These results can help us to recognize the prerequisites of germination and the development of the forests.

Highlights:
1- Germination indices of seeds related to several Ziziphus spinachristi seed lots were investigated under different water potentials.
2- Biochemical aspects related to seed dormancy in several Ziziphus spinachristi seed lots were evaluated.

Habib Nejadgharebaghi, Esfandiar Fateh, Amir Aynehband,
Volume 8, Issue 1 (9-2021)
Abstract

Extended Abstract
Introduction: In Iran, the majority of research has been done on the depth of burial on crops and the effect of these factors on weeds resulted from seeds and rhziomes of seedlings has been less studied. Strangle Wort weed is one of the most problematic weeds in sugarcane fields, orchards, especially pistachio orchards, barren lands, and roads. Thus, this study aimed to find out the effect of different levels of burial depth and flood stress on the extent and quality of seedlings resulted from its rhizomes.
Material and Methods: Two separate greenhouse experiments based on completely randomized design with four replications were conducted in the experimental farm of Sugarcane Research Institute of Khuzestan province at 2014-2015 growing season. Flooding stress treatment included 7 levels of flooding stress (4, 8, 16, 24, 48, 72, and 96 flooding hours) and 6 levels of seed burial (1, 3, 5, 7, 10, and 15 cm) and rhizome burial depth treatment included 7 levels (1, 3, 5, 7, 10, and cm 15).
Results: With increasing levels of flood stress, all studied traits including root length, stem height, total dry matter biomass, shoot dry weight and root dry weight of strangle wort rhizomes decreased at 96 hours of waterlogged stress compared to the control by 63, 70, 59, 98 and 74 percent, respectively. Also, in second experiment, buried rhizomes of this weed with a length of 5 cm at a depth of 15 cm were not able to produce new seedlings.
Conclusion: According to these results, for proper management of this weed, highly contaminated areas in the field should be identified (especially in sugarcane fallow fields because at this time there is no weed control limitation). Then, the weed should be turned it into pieces smaller than 5 cm with plowing tools. Also, if possible, with suitable tools, transfer rhizomes should be transferred to a depth of more than 15 cm and integrated weed control management with drought and flooding stress and burial depth with at least two times of plowing could be implemented to control weed and prevent its expansion.

Highlights:
1-Germination characteristics of strangle wort seedlings under burial depths and flooding stress were evaluated.
2-The effect of burial depth and flooding stress on control and management of strangle wort was examined.
3-Precise determination of weed biology and weed germination behavior will lead to proper execution of weed control program.

Behzad Nouri Feli, Hamid Reza Eisvand, Naser Akbari, Dariush Goodarzi,
Volume 8, Issue 2 (3-2022)
Abstract

Extended Abstract
Introduction: Providing important and effective elements such as zinc and boron- especially in areas where the soil for some reason cannot meet the needs of the plant- will be a good solution to improve seed and seedling quality and nutrition, and community health status. A considerable part of the wheat producing regions in the country are faced with late season haet during seed development stages. Thus, the present study will investigate the effect of heat stress and mother plant nutrition with zinc and boron micronutrients on seed deterioration and physiological quality of wheat seedlings.
Material and Methods: In a field experiment, wheat seeds were planted on two suitable planting dates (November 20) and late (January 5) to apply late-season heat stress during the seed development stage with three replications in Ramhormoz, Iran. The nutrition of mother plants with zinc and boron elements was done at three levels (nutrient-free and application of zinc and boron) as a foliar application. After harvest, the seeds were transferred to the laboratory and membrane integrity of seed cells was investigated using an electrical conductivity test as an indicator of deterioration. Another part of the seeds was planted in a factorial pot experiment based on RCBD with three replications to evaluate the quality of seeds and seedlings in the greenhouse.
Results: The results showed that exposure of seeds to heat stress during development reduced seed quality as well as seedlings so that the cell membrane in the seeds produced under heat stress conditions was damaged and their electrical conductivity increased by 19%. Also, these seeds showed more sensitivity to deterioration. The percentage of seedling emergence in the stressed seeds decreased by 21.66%. Heat stress also reduced seedling quality indices such as chlorophyll content, shoot dry weight, and root dry weight. Application of zinc and boron on the mother plant not only led to improved quality of seeds and seedlings under normal conditions but also the negative effects of heat stress on seed and seedling quality were reduced. There was a significant negative correlation between the seed electrical conductivity test and qualitative parameters. Therefore, the use of this test is recommended to determine the quality of seeds, especially seeds produced under late-season heat stress conditions.
Conclusion: Noting the negative effect of heat during seed development on seed quality, planting dates should be adjusted as much as possible so that the seed development stage does not coincide with the late-season heat stress. Due to the beneficial effects of using zinc and boron in the mother plant on many traits related to the quality of seeds and seedlings, their application- especially zinc- in soils with deficiency or the possibility of heat stress at the end of the season is recommended.

Highlights:
  1. Zinc and boron micronutrients were used to mitigate the harmful effects of heat stress on seed quality.
  2.  Physiological characteristics of seedlings obtained from seeds produced in the field under late-season heat stress conditions were investigated.

Seyedeh Tina Mousavi Kani, Davoud Kartoolinejad, Zohreh Bahrami, Ali Asghar Zolfaghari, Elahe Nikouee,
Volume 9, Issue 1 (9-2022)
Abstract

Extended Abstract
Introduction: Nowadays, due to land use change and destruction of natural resources induced by human activities, attention to desertification has immensely become widespread. One of the most important species for biological rehabilitation of desert areas on a large scale is the hawthorn plant. Hawthorn is a plant belonging to the family Amaranthaceae, the two species of which are called white saxaul (Haloxylon persicum Bunge ex Boissier & Buhse) and black saxaul (Haloxylon aphyllum (Minkw.) Iljin) are more notorious and widespread in Iran. These plants own extensive root systems and stabilize running sands. The aim of this study was to investigate the effect of mesoporous titanium dioxide nanoparticles on germination traits of black saxaul seeds under drought stress, as an important species in desert areas.
Materials and Methods: The experiment was performed as a factorial experiment in a completely randomized design with 3 replications. Experimental treatments included five titanium nano dioxides with concentrations of 0, 25, 50, 100 and 200 mg / l and six drought stress levels including 0, -4, -8, -12, -16 and -20 bar. After nanopriming, black saxaul seeds were subjected to drought stress for 15 days in a germinator at a temperature of 20 °C with four replications. After germination, in each of the treatments, germination percentage (GP), germination rate (GS), mean germination time (MGT) and seed vigor index (VI) were calculated.
Results: The results of two-way ANOVA and mean comparison of germination indices showed that the highest germination percentage (74%) belonged to the zero level of stress treatment with a concentration of 200 mg/l and the lowest one (3%) belonged to -20 bar treatment with 25 and 200 mg/l nano-titanium dioxide. With increasing drought stress intensity from zero to -20 bar level, germination rate decreased from 7.01 to 0.43 seeds per day. The highest amount of seed vigor index at zero drought level belonged to the treatment of 200 mg/l concentration of nano-titanium, with a rate of 325.77.
Conclusion: The results showed that germination indices and initial growth of black saxaul seeds decreased in all primed and unprimed treatments with increasing drought stress, and nanopriming with titanium dioxide had a positive effect on seed germination traits.

Highlights:

1- Seed priming using mesoporous nano-titanium dioxide improved the germination percentage of black saxaul seeds under drought stress.
2- The concentration of 200 mg/l of mesoporous nano titanium dioxide revealed a better effect on seed germination index, mean germination time, germination rate and percentage
3- Seed nano priming using titanium dioxide did not have much effect on the growth characteristics of black saxaul seedlings at higher levels of drought stress.
 
Hassan Gholami, Roohollah Abdolshahi, Mehdi Mohayeji, Mohsen Esmaeilizadeh-Moghadam,
Volume 9, Issue 2 (3-2023)
Abstract

Extended Abstract
Introduction: Wheat coleoptile protects the plumule and the first leaf so they can move from the embryo to the soil surface. Coleoptile is essential for plant establishment. Cultivars with longer coleoptiles and mesocotyls are sown deeper and are more successful under drought stress conditions. However, there is not much information about their genetics. The objective of the present study was to evaluate the coleoptile and mesocotyl of Iranian, overseas and the lines developed as a part of Shahid Bahonar University breeding program, and estimate of genetic parameters of these traits.
 Materials and Methods: In this research, 30 bread wheat genotypes originated from Iran, CIMMYT, ICARDA, USA, and Australia and five lines from Shahid Bahonar University of Kerman breeding programs were sown at a 10 cm depth of soil in the research field of Shahid Bahonar University in a randomized complete block design with seven replications. Each plot consisted of three rows with two meters long and a 5 cm intra-row spacing. At harvest, the plants were gently removed from the soil, and after removing the soil from the root area, the roots were washed. In this study, coleoptile and mesocotyl length, number of seminal roots, root length, root and shoot dry weight were measured.
Results: Coleoptile and mesocotyl are important traits for increasing drought tolerance in bread wheat. In the present research, mesocotyl length varied from 5.20 for Excalibur to 2.08 for Zagros, and showed a high heritability (0.48) and response to selection (11.61%). Furthermore, this trait had a positive significant correlation with coleoptile length (r=0.53**), root weight (r=0.38*) and shoot weight (r=0.36*). Seminal and nodal root number had the highest (0.59), while root length had the lowest (0.13) narrow-sense heritability. Overall, suitable cultivars for rain-fed conditions had higher coleoptile and mesocotyl than the others. Breeding lines in Shahid Bahonar University of Kerman suitable for rain-fed conditions had longer coleoptile and mesocotyl lengths. Root and shoot dry weight had a significant positive correlation (r=0.82**).
Conclusions: In general, breeding programs to increase grain yield differ under rain-fed and irrigated conditions. In wheat breeding programs under rain-fed conditions, special attention should be paid to coleoptile and mesocotyl traits. These traits were not influenced by the plant growth habit.

Highlights:
  1. Mesocotyl of the Iranian cultivars was evaluated for the first time.
  2. Breeding lines developed by Shahid Bahonar University of Kerman suitable for rain-fed had appropriate coleoptiles and mesocotyls.
  3. Coleoptile and mesocotyl had a significant and positive correlation.

Arezoo Paravar, Saeideh Maleki Farahani, Alireza Rezazadeh,
Volume 9, Issue 2 (3-2023)
Abstract

Extended abstract
Introduction: Lallemnatia ibercia (Dragon’s head) is an annual herb, which belongs to the Lamiaceae family. Nowadays, its seed is widely used in food and pharmaceutical industries due to its high mucilage and oil content. Soil moisture, nutrition, light, and temperature of the maternal environment play an important role in plant growth. However, the effect of soil moisture on yield and seed quality indices is greater during seed development. The positive effects of maternal plant nutrition with mycorrhizal inoculation can influence the quality improvement of the seeds developed under water deficit conditions. The reason for the quality improvement of the seeds developed under mycorrhizal inoculation condition is reported to be their water balance under water deficit conditions and as a result, more absorption of water and nutrients. Nutrient uptake by the maternal plant can play an important role in improving the germination and quality characteristics of the seeds developed under drought stress.
Materials and Methods: A field experiment was conducted in a completely randomized design with three replications at the Seed Science and Technology Laboratory of the College of Agriculture, Shahed University during f 2018-19 and 2019-20 years. Experimental treatments included irrigation regime (30, 60 and 90% of depletion of available soil water (ASW)) and mycorrhizal inoculation (non-inoculation and inoculation).
Results: The results showed that a reduction in soil moisture in the maternal environment decreased germination percentage and seed quality.  Germination percentage (51.20%) germination rate (7%), seed vigor index (27.70%), seedling length (28.3%), seedling dry weight (34.80%), seed mucilage (75.40%), as well as seed nutrients (27.30%), seed oil (14.60%) and catalase (35.25%) and ascorbate peroxidase (25.70%) enzymes activities enhanced in the seeds developed under 60% depletion of available soil water and application of mycorrhizal compared to control (30% depletion of available soil water and without mycorrhizal). Compared with the 30% depletion of available soil water and without mycorrhizal, mean germination time (17%) and lipid peroxidation (41.10%) increased under the 90% depletion of available soil water and without fertilizer mycorrhizal.
Conclusions: According to the results of this study, the irrigation regime of 60% available soil water depletion of maternal plants leads to the reduction of seed quality. However, the nutrition of maternal plants by mycorrhizal inoculation effectively improved the quality of seeds developed under water deficit due to the absorption of water and nutrients.

Highlights:
  1. Germination and seedling growth indices, quality and biochemical characteristics of the Lallemantia iberica seeds developed under different conditions of irrigation regime were investigated.
  2.  The effect of mycorrhiza on nutrient uptake, oil content, and antioxidant enzyme activity of the seeds developed under different irrigation regimes was investigated.
  3. The extent of damage to the lipid structures of cells in the seeds developed under different irrigation regimes and mycorrhiza fertilizer was investigated.

Mahboubeh Shahbazi, Jafar Asghari, Behnam Kamkar, Edris Taghvaie Salimi,
Volume 10, Issue 2 (2-2024)
Abstract

Extended abstract
Introduction: The germination process is one of the most critical stages of a plant's growth and determines the success of the emergence of a weed in an agroecosystem because it is the first stage in which the weed competes for a niche. Various environmental factors, including temperature and moisture, affect the germination of weed seeds. Modeling techniques are capable of predicting germination, seedling emergence, and establishment of weed species. The ability to predict weed germination in response to environmental conditions is very effective for the development of control programs. The experiment was conducted to determine the cardinal temperature and evaluate the best model for quantifying the response of the germination rate of Western ragweed weed seeds under different water stress conditions.
Materials and Methods: A factorial experiment was conducted in the form of a completely randomized design in three replications. The investigated factors include temperature with eight levels (5, 10, 15, 20, 25, 30, 35, and 40 C˚) and water potential with six levels (0, -0.3, -0.6, -0.9, -1.2, and -1.5 MPa) on the germination of Western ragweed. In order to quantify the response of Western ragweed germination rate to temperature, three non-linear Dent-like, Beta, and Segmented regression models were used.
Results: The results showed that the effect of temperature, water potential, and their interactions on maximum germination, germination rate, and time required to reach 10, 50, and 90 percent germination were significant. Also, the results showed that by increasing the temperature from 10 to 25 C˚, the percentage and rate of germination increased whereas by increasing water potential, the percentage and rate of germination decreased. In comparing the models, based on RMSE, R2, CV, and coefficients a and b parameters, the Beta model was the most suitable for estimating the temperatures of cardinal Western ragweed. The base, optimum, and ceiling temperatures using the Beta model were 3.88, 25, and 40 C˚, respectively.
Conclusions: The use of the Beta model to quantify the germination response of Western ragweed seeds to different levels of water potential at different temperatures had acceptable results. Therefore, by using the output of these models at different temperatures, it is possible to predict the germination rate at different potentials.

Highlights:
1- Germination cardinal temperatures and the effect of water potential on western ragweed weed were investigated.
2- Estimation of different models to quantify the response of germination rate to temperature and different water potentials.

Ebrahim Gholamalipour Alamdari, Meisam Habibi, Mohammad Hadi Masoumi, Maral Babayani, Ali Asghar Saravani,
Volume 10, Issue 2 (2-2024)
Abstract

Extended abstract
Introduction: In agricultural systems, several environmental stresses can remarkably alter the growth, physiological, and biochemical responses of plants under stress. One of these factors is the biochemical reactions between plants along with the production of secondary compounds. Allelochemicals mainly have defence and cell wall ligninization roles in plants and do not directly play a role in the growth processes of plants. Thus, an experiment was carried out to evaluate the effect of allelopathic stress of Hypericum perforatum on the germination, physiological, biochemical, and antioxidant activity characteristics of green pea, the benchmark plant sensitive to allelochemicals.
Materials and methods: The treatments included different concentrations of H. perforatum at 11 levels (i.e., 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100% of the aqueous extract). This research was carried out as a completely randomized design with three replications at the weed science laboratory of Gonbad Kavous University in 2023.
Results: The results of this study showed that one of the factors influencing the physiological, and biochemical characteristics of green pea is the concentration of the H. perforatum extract. In most cases, the percentage and rate of green pea germination, radicle and plumule length, and dry weight of radicle and plumule decreased with increased concentration of aqueous extract compared to the control, so that the greatest reduction in these characteristics was observed in 100% of H. perforatum extract. In contrast, the content of compatible osmolytes such as proline and soluble sugars, phenolic and flavonoid compounds, and antioxidant activity of green pea roots and plumules increased significantly in all studied treatments, with the highest increase in these characteristics observed at the concentration of 100% of H. perforatum aqueous extract. In general, the decrease in the dry weight of green pea seedlings due to the increase in the concentration of the aqueous extract of H. perforatum, despite the relative increase in the content of physiological and biochemical traits, indicates the high intensity of allelopathic stress of H. perforatum extract and their insufficiency, which leads to cytotoxicity against oxidative stress.
Conclusion: Considering the heterotoxicity effect of H. perforatum on green pea sensitive to allelochemicals and its distribution in gardens, barren lands, and wheat and corn fields, the possible effect of their residues in the next planting and even in case of presence in mixed cultivation should be considered.

Highlights:
  1. Aqueous extract obtained from the H. perforatum drastically reduces the germination and seedling growth of green peas.
  2. The difference in the effect of the aqueous extract of H. perforatum on green pea, the benchmark plant sensitive to allelochemicals, depends on their concentration threshold.
  3. The high intensity of allelopathic stress of H. perforatum extract and insufficient non-enzymatic antioxidants lead to oxidative stress.

Ronak Talebi Qormik, Hadi Alipour, Reza Darvishzadeh,
Volume 11, Issue 1 (9-2024)
Abstract

Extended abstract
Introduction: The germination stage in plants, including wheat, is an extremely susceptible stage to biotic and abiotic stresses. Plant establishment the in the early stages of growth, especially in the germination stage, is always notably important. Salinity stress is one of the abiotic stresses that cause much damage annually, especially in arid and semi-arid regions. Therefore, identification and use of cultivars tolerant to salinity stress is one of the effective ways to reduce the negative effects of salinity stress.
Materials and Methods: In the present study, response of 64 spring wheat cultivars during the germination stage at two levels of salinity stress (zero as a control and 12 dS/m of sodium chloride) was investigated in the form of a simple lattice design with two replications at the Genetics Laboratory of the Faculty of Agriculture, Urmia University. During seven days, germination percentage, germination index, germination rate, germination energy, seedling vigor, mean germination time, and mean germination rate, and after the seventh day, seedling length, shoot length, root length, ratio of shoot length to root length, seedling fresh weight, and seedling dry weight were measured.
Results: Among the studied cultivars, a statistically significant difference was observed at the probability level of 1% in terms of all traits including radicle length, shoot length, seedling length, fresh weight, dry weight, radicle to shoot length ratio, germination index, germination rate, germination energy, germination percentage, seedling vigor, mean germination time, and mean germination rate. Based on the results of factor analysis, under both normal conditions and salinity stress, the studied traits were grouped into four main factors, and these four factors explained 92.74% of the changes under normal and 93.85% under salinity stress conditions. Using cluster analysis, cultivars were grouped into three and two clusters under normal and salinity stress conditions, respectively.
Conclusions: Based on the results of bi-plot obtained from factor and cluster analyses, the cultivars Moghan 2, Bistun, Akbari, Moghan 3, Dastjardi, Marvdasht, Gahar, and Mahdavi are the preferred cultivars and the cultivars Darya, Bam, Tajan, Sistan, Frontana, Kavir, and Afogh were introduced as undesirable cultivars in terms of the traits measured in this experiment, which can be used in breeding projects.

Keywords:  Bread wheat, Germination, Multivariate analysis, Salinity stress
Highlights:
  1. A great diversity was observed among Iranian spring wheat cultivars in terms of salt tolerance during germination.
  2. Mahdavi, Dastjardi, Bistun, Akbari, Moghan 2, Moghan 3, Gahar, and Marvdasht were identified as salt-tolerant cultivars during germination.

Abdolhadi Mashreghi, Ebrahim Gholamalipour Alamdari, Ziba Avarseji, Ali Rahemi Karizaki,
Volume 11, Issue 1 (9-2024)
Abstract

Extended abstract
Introduction: Chemical compounds in plants include primary or secondary compounds. The allelopathic compounds are mainly of the secondary type, which are released by ways such as leaching, decomposition of plant residues, volatilization, and root exudation. Plants with allelopathic properties have a negative or even positive effect on the germination and growth of other plants by releasing substances in their surroundings. These effects depend on the type of organ, concentration, plant growth location, physiological maturity, etc.
Materials and Methods: An experiment was conducted to evaluate the allelopathic potential of wild barley (Hordeum spontaneum) weed on some germination, morphophysiological, and biochemical characteristics of a reference plant sensitive to allelochemicals, cress (Lepidium sativum), in 2021. This experiment was conducted in the form of a completely randomized design with three replications. The treatments included different concentrations of H. spontaneum aqueous extract at 11 levels (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100%).
Results: The results showed that different concentrations of H. spontaneum aqueous extract had a significant decreasing effect on the percentage and rate of seed germination, radicle and shoot length, seedling length vigor index, radicle and shoot dry weight, as well as photosynthetic pigments (i.e., chlorophyll a, b, total, and carotenoids) of cress. Their effectiveness was dependent on the concentration threshold of the aqueous extract. In contrast, the content of proline amino acid , soluble sugars, ion leakage, catalase activity, guaiacol peroxidase enzymes, the concentration of malondialdehyde, and phenolic compounds showed an increasing trend compared with the control. In most cases, the highest increase in these compounds was obtained at the 100% aqueous extract concentration of H. spontaneum. This indicates the oxidative stress and high cytotoxicity caused by harmful compounds present in the aqueous extract of H. spontaneum.
Conclusions: According to the results of this experiment, it can be decucted that the aqueous extract of H. spontaneum, due to its allelopathic properties, prevented germination and seedling growth of L. sativum. Therefore, according to the proof of the harmful effect of H. spontaneum and its high biomass, it may be possible to introduce the bioactive compounds present in this plant for the production of environmentally friendly herbicides or even the potential to produce new formulations of synthetic herbicides in case its positive effect on other species is proven.

Highlights:
  1. The difference in the effect of different concentrations of Hordeum spontaneum weed aqueous extract on germination and seedling growth of a reference plant sensitive to the allelochemicals, Lepidium sativum, is related to their concentration threshold.
  2. The significant decrease in germination characteristics and photosynthetic pigments of L. sativum indicates the intensity of oxidative stress caused by the harmful compounds in the aqueous extract of H. spontaneum.
  3. The allelopathic characteristics of H. spontaneum weed can be a suitable candidate for the production of biological herbicides.


Page 2 from 2     

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.