Salt and drought are two major environmental stresses that affect growth and development of plants. In order to study the effects of sodium chloride and polyethylene glycol (6000) on germination characteristics and early seedling growth of redroot pigweed (Amaranthus retroflexus), two completely randomized designs with 4 replications were conducted at Weed Research Laboratory of Bu-Ali Sina University, Hamedan in 2015. The treatments were salt and drought stress as osmotic potential at six levels (zero (control), -2, -4, -6, -8 and -10 bar). The results showed that when stress increased, germination percentage, germination speed, radicle and plumule length, seedling length and seedling vigor index decreased significantly (p≤ 0.05). With an increase in the intensity of salt and drought stress from zero to -10 bars, redroot pigweed seed germination reduced about 96 and 100 percent, respectively, compared with the control. The highest seedling length in both stresses was observed in the control (7.71 cm) and by increasing stress intensity to -10 bars in both salinity and drought stresses, seedling length was reduced to 1.52 cm and 0 cm, respectively. Fitting of the three-parameter logistic model provided a successful estimation of the relationship between salt and drought stress levels and germination percentage of redroot pigweed as well as germination speed. This model showed that salinity and drought stress at -3.58 and -3.75 bars caused a 50% reduction in maximum germination percentage of redroot pigweed. In addition, 50% decrease in germination speed caused by salinity and drought stress was observed in -2.58 and -2.88 bars, respectively.
Highlights:
Extended Abstract
Introduction: Seeds are a good option for propagation and protection of medicinal plants. Although Seed dormancy is an adaptive strategy for wild medicinal plants, but it is considered as an undesirable trait in domestication and cultivation of them, need to be solved. Echinophora platyloba seed has dormancy despite its remarkable medicinal properties.
Materials and Methods: In order to break seed dormancy, three separate experiment including stratification, hormonal treatment and combination of both were performed. For stratification 10 samples of were placed in a wet bed at 5 ° C for 2, 4, 6, 8, 10, 12, 14 and 16 Week and were compared using a completely randomized design with three replications. For hormonal treatment, the seeds were placed in GA concentrations of 0, 500 and 1000 ppm for 24 hours and then transferred to germination conditions. However, since the breaking of dormancy did not occur, this experiment was not discussed any more. For combined application of hormone and stratification, seeds were placed at mentioned concentrations of gibberellin for 24 hours at 20 ° C and then gibberellin solutions were removed and the seed transmitted to 5 ° C and compared for 2, 4, 6, 8 weeks with a CRD factorial experiment with three replications. The first factor was concentration of gibberellin in three levels and the second factor was the duration of stratification in 4 levels.
Results: Stratification had a positive effect on seed dormancy breaking and 16 week chilling lead to highest germination percentage and rate and vigor indices. The combined application of hormonal treatments accelerated dormancy release and improved seed germination characteristics, which peaked at 8 weeks. 8-week stratification treatment at 5 ° C with 1000 ppm gibberellic acid was the best treatment to overcoming of dormancy in Echinophora-platyloba seeds.
Conclusion: It seems that seed dormancy of Echinophora seeds is physiological, which broke down by moist chilling and simultaneous application of stratification and gibberellin successfully. Although Gibberellin had no effect on dormancy break, it reduced the need for stratification. Combined application of them showed synergistic effects on dormancy release.
Highlights:
Extended abstract
Introduction: Heavy metal pollution is one of the most serious environmental problems. These metals which accumulate in food chain bring about a lot of hazards to both humans and animals. Among heavy metals, lead is considered to be the most dangerous heavy metal in the environment. It contaminates the environment through the lead-acid battery industry, paint and gasoline additives, insecticides, chemical fertilizers, car exhaust pipes and soldering. The objective of this study was to investigate the effect of Pb(NO3)2 on germination characteristics and biochemical changes of two wheat cultivars (Chamran and Kohdasht cultivars).
Materials and Methods: The objective of this research was to evaluate germination and biochemical changes of two wheat cultivars under Pb(NO3)2 stress, using three-parameter sigmoid model. The experimental design adopted was factorial with a completely randomized design, as the base design, with 3 replications. The first factor was 2 wheat cultivars (Kohdasht and Chamran), and the second factor was 6 levels of Pb(NO3)2 (0, 0.25, 0.5, 0.75, 1 and 1.5 mg.L).
Results: The results showed that with increases in levels of Pb(NO3)2 stress, germination percentage, germination rate, normal seedling percentage, seedling length, seedling weight and seed vigor index reduced for both wheat cultivars. The results of fitting three-parameter sigmoidal to characteristics indicated that the highest characteristics and X50 were obtained from the Chamran cultivar. The highest germination percentage (96%), germination rate (23 seeds per day), normal seedling percentage (93.33%), seedling length (13.07 cm), seedling weight (0.07) and seedling vigor index (12.18) were obtained from the Chamran cultivar under non-stress conditions. Pb(NO3)2 stress increased proline and catalase activity but reduced protein, proline and protein for the Chamran cultivar, as compared with the Kohdasht cultivar.
Conclusion: Generally speaking, the results showed that Pb(NO3)2 had a significant effect on germination characteristics and catalase, proline and protein of wheat. Finally, it could be said that in copper-accumulated areas, choosing proper cultivars can slightly mitigate the damages caused by copper. The Chamran cultivar seems to be a better candidate for these conditions.
Highlights:
Extended Abstract
Introduction: Strangle wort (Cynanchum acutum) is a perennial weed that could be propagated by seeds and vegetative organs. This brings about harvesting problems for some crops such as cotton, sugar beet, wheat and maize. In recent years, this weed has caused huge losses in sugar cane fields. The role of environmental conditions in weed management is highly important. Given this, the present study seeks to investigate the effects of environmental conditions (salinity and drought stress) on germination characteristics of strangle wort weed.
Materials and Methods: In order to investe the effect of different salinity and drought levels on strangle wort (Cynanchum acutum), two seperate experiments were conducted at Hakim Farabi Khuzestan Sugar Cane Research Institute in 2014-2015. The experimental design was completely randomized, with four replications. The treatments were different salinity levels at 8 levels (0, 2.5, 4.5, 6.5, 8.5, 12.5, 16.5 and 20.5ds/m) and the second experiment involved different drought stresses (osmotic potential) at 7 levels (0, -1, -3, -6, -9, -12 and -15 bar).
Results: The results of salinity stress experiment showed that with increases in salinity levels from 0 to 20.5 ds/m, germination, radicle length, plumule length and seedling weight decreased by 61, 80, 91 and 99%, respectively. The results of drought stress experiment showed that with increases in salinity levels from 0 to -15 bar, all studied traits, i.e., germination, radicle length, plumule length and seedling weight all decreased by 100%.
The analysis of variance results showed that in all the traits, there were significant differences between salinity and drought stress in 1% probability level. In this research, in the salinity experiment, in most of traits, especially radicle length quickly decreased after 8.5 ds/m salinity to higher levels and in drought stress experiment, after -3 bar to higher levels.
Conclusion: On the whole, it seems that sufficient information about this weed is vital for the adoption of the best control method, and gaining insights into how strangle wort responds to environmental stress, especially salinity stress, could help us to come up with new control approaches for this invasive weed. This can present a proper ecological approach that could be adopted in sustainable agriculture programs, which is environmentally sound as it decreases the use of chemical inputs. In addition, in order to lower the tolerance of this weed to salinity and especially drought stress, it is suggested that it be used for weed management programs. According to the results of this study, soil salinity higher than 8.5 ds/m and drought tension above than -3 bar can cause sizeable reduction in most traits (growth parameters) especially in root length. In most of the traits scrutinized, the tolerance of the weed to salinity and drought stress was 12.5 ds/m and -6 bar, respectively.
Highlights:
© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research
Designed & Developed by : Yektaweb