Search published articles



Haniyeh Saadat, Mohammad Sedghi,
Volume 11, Issue 2 (3-2025)
Abstract

Extended abstract
Introduction: Salinity stress leads to the excessive production of reactive oxygen species, which at high levels can cause oxidative damage, disrupt membrane lipid functions, inactivate enzymes, and hinder metabolic activities in plants. Salinity affects seedling growth through osmotic stress, ionic toxicity, deficient absorption of essential nutrients and water, production of free radicals, destruction of the cell membrane, and reduced cell division. Utilizing pretreatment methods serves as a simple approach to mitigate the adverse effects of environmental stress. Seed pretreatment induces biochemical changes, such as the activation of enzymes involved in cellular metabolism, inhibition of metabolism, and improved water absorption, thereby aiding the germination process. This study aims to assess the impact of pretreatment on germination characteristics, activity of certain hydrolytic enzymes, and the glyoxylate cycle in marigold seedlings under salinity stress.
Materials and Methods: A factorial experiment was conducted based on a completely randomized design with three replications at the University of Mohaghegh Ardabili in 2023. Experimental treatments included four salinity levels (0, 50, 100, and 150 mM sodium chloride) and four pretreatment methods (control with distilled water, pretreatment with salicylic acid at 100 mg/L, gibberellin at 20 mg/L, and chitosan at 0.8% w/v, dissolved in 1% acetic acid).
Results: The findings indicated that salinity reduced germination percentage, mean daily germination, petiole length, and seedling dry weight. However, pretreatment with salicylic acid, gibberellin, and particularly chitosan significantly improved these parameters. The germination coefficient, radicle length, and seedling fresh weight in chitosan-pretreated groups without salinity were approximately 75%, 68%, and 34% higher compared to the control (distilled water) and 150 mM salinity treatments, respectively. Additionally, the activities of amylase, protease, and malate synthase in chitosan-pretreated groups without salinity increased by approximately 82%, 46%, and 70%, respectively, compared with the control and 150 mM salinity.
Conclusions: The results of this research demonstrate that seed pretreatment using salicylic acid, gibberellin, and especially chitosan is an effective strategy for enhancing germination indices and the activity of certain hydrolytic enzymes and the glyoxylate cycle, thereby alleviating the detrimental effects of salinity on marigold seedlings and promoting their growth.

Highlights:
  1. Seed pretreatment with salicylic acid, gibberellin, and especially chitosan significantly improved germination indices of marigold seeds under salinity conditions.
  2. This pretreatment enhanced the enzymatic activity of amylase, protease, and malate synthase.
  3. Chitosan pretreatment exhibited superior effects on germination indices and biochemical characteristics.

Aidin Hamidi, Bita Oskuoei, Ali Shayanfar,
Volume 11, Issue 2 (3-2025)
Abstract

Extended abstract
Introduction: Seed germination has always been of interest to plant ecologists due to its key role in plant population establishment. Also, due to the importance of this process in seed certification, this phenomenon is of interest to control and seed certification experts. Temperature, access to sufficient humidity, and the presence of light in light-sensitive species for seed germination are considered to be the most important natural factors for seed germination. Additionally, the time required for germination and sufficient early seedling growth are important to determine the potential seed germination. Therefore, determining the temperature, the need or lack of light, as well as the time required for germination and the suitable substrate for planting seeds, are of great importance in the process of seed certification laboratory tests.
Materials and Methods: In order to determine the optimal conditions for seed germination of three species of Salicornia persica, S. persepolitana, and S. bigelovi, the seeds were grown under three constant temperatures of 20, 25, and alternating temperatures of 20-25 °C (8-16 hours light-dark), two culture beds (top-of-paper (TP) and between-paper (BP)), and two germination periods of 7 and 12 days.
Results: The results showed that the seeds of S. bigelovi species had the highest percentage of normal seedlings at 25 °C constant temperature for 7 days in the top-of-paper (TP) substrate. Also, the seeds of S. persica had the highest percentage of normal seedlings at 20-25 °C alternating temperature for 7 days in the top-of-paper (TP) substrate. S. persepolitana seeds at 25 °C constant temperature for 7 days on the top-of-paper (TP) substrate had the highest percentage of normal seedlings. S. persica, S. bigelovi, and S. persepolitana seeds had a higher percentage of normal seedlings in both germination durations and temperatures, respectively.
Conclusions: The results of this research showed that the seeds of the studied Salicornia species did not require light for germination. Also, in terms of temperature requirements, the time required for germination, and the substrate, they differed from each other. The seeds of S. persica reached the maximum percentage of normal seedlings at 20-25 °C alternating temperatures. The seeds of S. bigelovi and S. persica species needed a shorter time to reach the maximum percentage of normal seedlings, while the seeds of S. persepolitana needed a longer time to germinate and reach the maximum percentage of normal seedlings. Therefore, it was determined that the best temperature, duration, and substrate to achieve the maximum percentage of normal seedlings in the standard seed germination test were 25 °C for 7 days and top-of-paper (TP) substrate for S. bigelovi, 20-25 °C alternating temperature for 7 days and top-of-paper (TP) substrate for S. persica, and 20 °C constant temperature for 7 days and top-of-paper (TP) substrate for S. persepolitana species.

Highlights:
  1. Light was not necessary for the studied Salicornia species seeds' germination.
  2. The studied Salicornia species seeds' germination response to optimum temperature was different.
  3. The studied Salicornia species seeds' optimum germination duration was different.

Mohammad Reza Mirzaei,
Volume 11, Issue 2 (3-2025)
Abstract

Extended abstract
Introduction: One of the most important factors in achieving optimal root yield of sugar beet at the time of harvest is proper plant density due to the high field emergence and subsequent seedling growth through the use quality seeds. Of the determining traits the vigor and quality of sugar beet seeds are different seedling traits.
Materials and Methods: For this purpose, the germination vigor and seedling growth rate in laboratory conditions by measuring the traits of maximum germination, hypocotyl length, radicle length, fresh and dry weight of seedling in 10 single cross hybrids along with the male parent produced in three locations was used. Also, the correlation of the mentioned traits with seedling emergence traits in the greenhouse and the chemical traits of sugar beet seed was studied.
Results: The results showed that seedling traits, which are represents trait of the seed vigor, are determined by two factors, seed production environment and genetics. The correlation coefficients between seedling traits in the laboratory with seedling emergence traits in the greenhouse and seed electrical conductivity showed that genotypes with low electrical conductivity and percentage of soluble solids on the pericarp of sugar beet seeds, germinated faster in greenhouse conditions and mean emergence time was decreased. Therefore, high level of electrical conductivity of sugar beet seed pericarp was associated with low seed vigor.Also, significant correlation was observed seedling emergence rate and mean seedling emergence time in greenhouse with hypocotyl length in the laboratory positive (+0.91**) and negative (-0.82**), respectively. It can be concluded that the genotypes with longer hypocotyl length in the laboratory resulted in faster seedling emergence rate in the greenhouse. Subsequently, single crosses such as MS KWS * OT 231 with greater root length (8.49 cm), seedling length (14.66 cm), and the ratio root length to hypocotyl (1.37) in laboratory conditions, increased the mean dry weight of shoot (1.89 mg) and SVI (8.26) in the greenhouse compared to the single crosses others were accompanied.
Conclusions: Therefore, it seems that seedling traits and the chemical characteristics of sugar beet seeds to predict the emergence of seedlings in greenhouse and perhaps in the field are recommended. However, in order to accurate validation and evaluation, it is recommended that the aforementioned experiment be conducted under field conditions.

Highlights:
  1. There were differences between the genotypes in terms of seed characteristics and the maternal environment in which the seeds were grown.
  2. Poor vigor and seed performance can reduce the percentage of seedling emergence potential as well as the rate and uniformity of seedling emergence compared to high vigor seeds.
  3. Seedling traits in sugar beet are traits of the seed vigor that are influenced by the sugar beet seed production environment and genetics.


Page 3 from 3     

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.