Search published articles


Showing 5 results for Torabi

Maral Etesami, Ali Rahemi Karizaki, Benyamin Torabi,
Volume 2, Issue 1 ((Spring and Summer) 2015)
Abstract

Germination rate and percentage are maximal at optimum temperatures and then reach to zero at the base and ceiling temperatures. An experiment was conducted at the Gonbad Kavous University laboratory as a completely randomized design with 4 replications, to study germination response to temperature and evaluation of cardinal temperature on germination rate and percentage of hibiscus tea. Seeds germinated at 0 to 45 0C by 5 0C intervals. Results indicated that the response of germination percentage and rate adequately fitted with dent like and segmented functions, continually. Base and ceiling temperatures were 1.66 and 43.33 0C for germination percentage and 4.53 and 42.95 0C for germination rate. Optimum temperatures were 30 0C for germination rate and 11.56 and 33.63 0C for germination percentage. In conclusion, base and favorable temperatures for hibiscus tea seeds were 11 and 35 0C. Therefore it is recommended to cultivate at Gonbad kavous weather condition.


Shayeste Bemany, Batool Mahdavi, Benyamin Torabi,
Volume 2, Issue 1 ((Spring and Summer) 2015)
Abstract

In order to study the effect of alkaline stress on seed germination and seedling biochemical characteristics of two safflower cultivars, a laboratory experiment was conducted based on a completely randomized design with three replications in the Vali-e-Asr University of Rafsanjan. Experimental factors included the levels of alkaline with sodium bicarbonate (0, 10, 20, 30, 40, 50 and 60 mM) and two cultivars of safflower (Soffeh and 411). The result showed that alkaline stress had significant effects on seed germination characteristics. Increasing alkaline stress reduced percentage and rate of germination, length and dry weights of shoots and roots, K+ concentration and K+/Na+. However, alkaline increased malondialdehyde content, proline, total carbohydrate and Na+ concentration. In alkaline stress condition, there was a significant difference between cultivars in length of shoots and roots, proline content and K+ concentration. 411 cultivar showed notable superiority compared to Soffeh cultivar. Both cultivars had the highest malondialdehyde at 60 mM alkalinity and the lowest malondialdehyde obtained in Soffeh cultivar and control. The result of this research showed that 411 cultivar was better than Soffeh cultivar in proline and soluble sugar content, but these two cultivars had no significant differences in other traits.


Mohsen Malek, Farshid Ghaderi-Far, Benjamin Torabi, Hamid Reza Sadeghipour,
Volume 6, Issue 2 ((Autumn & Winter) 2020)
Abstract



Extended Abstract
Introduction: Priming is one of the most commonly used seed enhancement techniques. Events such as increased synthesis of nucleic acids, activation of repair processes, increased respiratory activity, and improved antioxidant capacity during priming lead to advanced metabolism in seeds. The most important effects of priming include increased percentage, speed and uniformity of germination and emergence. However, the longevity of primed seeds in storage is the major concern for researchers as it restricts widespread use of this technique. Some researchers believe that priming reduces the storage capacity of seeds, while others have reported increased seed shelf life after using priming treatments. Therefore, this study sought to investigate the effects of priming on the storage capacity of the seeds of canola cultivars under different storage conditions.
Material and Methods: In this study, the effects of priming on the shelf life of seeds of three canola cultivars including Dk-xpower, Traper and Hayola50 were investigated. For this purpose, the seeds were first treated with hydropriming and osmopriming methods. Then primed and control seeds with 6, 9, 12 and 15% moisture content were stored for 8 months at 15, 25, 35 and 45 °C. Sampling from different seed treatments was carried out at intervals of 1 to 30 days to assess germination. Finally, by fitting a three-parameter logistic model to cumulative germination data versus the day after storage, the time to germination loss to 50% was calculated and used to compare seed storage behavior between the treatments.
Results: The results showed that the storage behavior of canola seed varies greatly depending on the cultivar, and each cultivar showed a distinct behavior. Priming effects on the shelf life of seeds were different depending on the storage conditions, cultivars and also the priming methods. Comparison of the effects of priming on the seeds’ shelf life under different storage conditions showed that priming treatments were more efficient under higher seed moisture content and storage temperatures than those with lower seed moisture content and storage temperatures. In addition, priming treatments in Dk-xpower cultivar often increased the seeds’ shelf life. However, in the Traper and Hayola 50 cultivars, hydropriming often improved the seeds’ shelf life, and in contrast to osmopriming, it led to a decrease in the shelf life of the seeds.
Conclusion: Based on the results of this study, it was shown that priming effects on canola seed viability can be a function of various factors such as cultivar, storage conditions, and also the type of priming treatment. Moreover, in this study, hydropriming often increased seed longevity whereas osmopriming often increased the deterioration rate and reduced seed longevity.
 
 
Highlights:
  1. Seed storage behavior of canola cultivars was compared under natural storage conditions.
  2. Priming effects on seed longevity of canola cultivars was investigated under different storage conditions.

Mohsen Malek, Farshid Ghaderi-Far, Benjamin Torabi, Hamidreza Sadeghipour,
Volume 7, Issue 1 ((Spring and Summer) 2020)
Abstract



Extended Abstract
Introduction: Seeds, like other materials, are hygroscopic and exchange moisture with their surroundings. The changes in the moisture of seeds during storage depend on their hygroscopic nature and this feature plays an important role in determining the seed quality and longevity. Furthermore, studying the hygroscopic characteristics if seeds can be useful in seed storage studies as well as in commercial applications such as drying and seeds processing. Therefore, in this study, the relationship between seed moisture content and relative humidity in seed of rapeseed cultivars was studied.
Material and Methods: In this study, the relationship between the ambient relative humidity and seed moisture content of three rapeseed cultivars at 10, 20 and 30 °C was investigated using hygroscopic equilibrium curves. Therefore, water desorption and absorption curves were studied separately. Water absorption and desorption curves were obtained by drying the seeds at 1% relative humidity and seed hydration at 100% relative humidity, respectively, followed by transferring the seeds to different relative humidities at different temperatures and finally determining the equilibrium moisture content of the seeds. It should be noted that glycerol and sulfuric acid solutions were used to creation different relative humidity. Finally, the relationship between seeds moisture content against the relative humidity was quantified by fitting the D’Arcy-Watt equation.
Results: The results indicated that the seeds moisture content varied in cultivars and temperatures at different relative humidities. Also, there was a difference between water desorption and absorption curves in all cultivars and temperatures; desorption curves were generally higher than water absorption curves. The greatest difference among the cultivars regarding seed moisture content was observed at 100% relative humidity, and this difference was less severe at lower relative humidities. Also, the highest seed moisture content of rapeseed cultivars was observed at 20 °C and 100% relative humidity, and the lowest seed moisture content was recorded at 30 °C and 1% relative humidity.
Conclusions: According to the results, it was found that the relationship between seed moisture content and relative humidity followed a sigmoidal function, and this relationship would also vary depending on cultivar and temperature. There was also a difference between the adsorption and desorption curves, which is called "hysteresis", and showed that the seed moisture content at a constant relative humidity was generally higher in the state of dehydration compared with that in the state of hydration. Due to this event, desorption curve is situated higher than the absorption curve.

Highlights:
  1. Response to hygroscopic equilibrium curves in seeds of different rapeseed cultivars was compared.
  2. Sulfuric acid and glycerol solutions were used to create different relative humidity.

Ahmad Munir Amini, Farshid Ghaderi-Far, Dr Benjamin Torabi, Asieh Siahmargue, Hamid Reza Sadeghipour,
Volume 10, Issue 2 ((Autumn & Winter) 2024)
Abstract

Extended abstract
Introduction: With regard to the ever-growing water deficit in the world, the adoption of the direct-seeded rice cultivation system has been suggested as an alternative to the transplanting method. One of the disadvantages of the direct-seeded method is low and non-uniform germination and emergence due to low seed vigor in rice. Priming is a technique which improves the rate and uniformity of seed germination under these conditions. Thus, this study aimed to investigate the effects of priming treatments on seed germination of different rice cultivars under different temperature conditions using the thermal time model.
Materials and methods: This study was conducted in 2019 at the seed research laboratory of Gorgan University of Agricultural Sciences and Natural Resources. In this experiment, germination of primed and non-primed seeds in three rice cultivars (Nada, Anam, and Tolo) was investigated under different temperatures (15, 20, 25, 30, and 35°C). The priming treatments which consisted of control, hydropriming, and osmopriming with different chemicals (potassium chloride 2%, potassium nitrate 1%, calcium chloride 4%, glycine betaine 10 ppm, salicylic acid 10 ppm, and ascorbic acid 10 ppm) were investigated under different temperatures.
Results: The results showed that priming treatments had no significant effect on the seed germination percentage of rice cultivars at different temperatures. The thermal time model based on binomial distribution fitted well to cumulative germination percentages in all priming treatments. Among the parameters of the thermal time model, the greatest priming effect was on the reduction of the thermal coefficient, followed by the reduction of the sigma coefficient, which resulted in the increased rate and uniformity of germination. Priming treatments had no significant effect on base temperature. Also, the responses of rice cultivars to seed priming treatments varied so that in Anam and Neda, priming with calcium chloride but in Tolo, hydropriming was more effective on the model parameters, especially thermal time to 50% of germination.
Conclusion: In general, priming treatments did not affect the base temperature of germination in rice cultivars, but they significantly affected the rate and uniformity of seed germination. As the latter issue is one of the main problems in the direct-seeded rice system, suitable priming treatments for each cultivar can be adopted to increase the rate and uniformity of seed germination and emergence in this system.

Highlights:
  1. The thermal time model can be used to select the appropriate priming treatment for improving seed germination components of rice cultivars.
  2. The responses of rice cultivars to different seed priming treatments were different.
  3. Priming treatments did not improve the base temperature of seed germination in rice cultivars, but they significantly affected seed germination rate and uniformity.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.