Marigold (Calendula officinalis) is a medicinal plant belonging to the Asteraceae family, which seems necessary the review of its various features especially the improvement of reproduction in order to the development of vegetation and extraction of raw pharmaceutics materials. In order to study the effects of seed hardening on the quality of seeds harvested from different positions of inflorescence on the storability of pot marigold, an experiment conducted at the University of Mohaghegh Ardabili in 2011. Seeds hardened before planting with CaCl2 2% and distilled water. At harvest, the seeds collected from both inner and outer regions of the inflorescence from storage experiments in the laboratory. Harvested seeds stored for six months at 40°C. Then an experiment conducted as factorial based on a completely randomizes design with four replications at the laboratory. Results showed that the highest germination percentage (96%), rate (3.91 day-1), radicle length (5.71 cm) and seed residual dry weight (0.061 g) were related to outer positioned seeds. The highest plumule length (4.79 cm) and seedling dry weight (0.016 g) obtained from outer seeds hardened with distilled water. In conclusion, for best stability results of pot marigold seeds, it is recommended to harden seeds before planting with water and harvest outer seeds from the inflorescence.
<<
Objective: This study aimed to evaluate the effect of chitosan on germination indicators and the activity of antioxidant enzymes in safflower seedlings under salinity stress.
Method: The experiment was conducted using a factorial arrangement based on a completely randomized design with three replications at the University of Mohaghegh Ardabili in 2024. The experimental treatments included four salinity levels (0, 50, 100, and 150 mM NaCl) and four concentrations of chitosan (0, 0.2, 0.4, and 0.5% w/v), which were dissolved in 1% acetic acid.
Results: The results showed that salinity stress reduced the germination rate, radicle length, plumule length, seedling length, seedling fresh weight, and seedling dry weight. However, priming with different concentrations of chitosan, especially at 0.5%, improved these traits. The highest daily germination rate (0.114) was observed in the control group (distilled water priming) under 150 mM salinity. The activity of catalase and peroxidase enzymes in the control under 150 mM salinity increased by approximately 43% and 70%, respectively, compared to the 0.5% chitosan treatment under non-saline conditions. Similarly, the activity of superoxide dismutase enzyme in the 0.5% chitosan treatment under 150 mM salinity increased by about 67% compared to the control under non-saline conditions. Furthermore, the ascorbate peroxidase enzyme activity in seeds primed with 0.5% chitosan increased by 37% compared to the control (distilled water priming).
Conclusions: The results indicated that seed treatment with different concentrations of chitosan can mitigate the harmful effects of salinity on some traits of safflower seedlings and improve seedling growth. The best results were achieved when 0.5% chitosan was used under salinity conditions.
Highlights
Page 1 from 1 |
© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research
Designed & Developed by : Yektaweb