Search published articles


Showing 3 results for Rezaei

Vahid Mansouri Gandomany, Heshmat Omidi, Mohammad Rezaei Charmahin,
Volume 3, Issue 2 ((Autumn & Winter) 2017)
Abstract

In order to investigate the effect of pretreatment of chitosan biological compounds on seeds of soybean (Glycine max L. cv. Williams) under salt stress conditions, a factorial experiment was conducted, adopting a completely randomized design with three replications at Shahed University in 2015. Factors examined included the combination of chitosan at three levels (0, 0.25 and 0.5 the weight-volume) and salinity at 4 levels (0, 5, 5.7 and 10 dS/m). The results showed that the interaction of chitosan and salinity had a significant impact on seed germination characteristics such as germination percentage, germination rate, mean germination time, normal seedling and physiological characteristics such as proline and soluble sugars of shoots. In contrast to salt stress increase of 30%, and an increase of 24 and 35% of proline and soluble sugars of the shoot, pretreatment of chitosan (0.25%) improves seedling germination characteristics of soybeans. Given the impact of the treatments of chitosan on seed germination and seedling growth of soybean, it is possible to introduce 0.25% W/V chitosan as a treatment to deal with conditions of salinity.
 


Abdolhosein Rezaei, Farshid Ghaderi-Far, Hamid Reza Sadeghipour,
Volume 10, Issue 2 ((Autumn & Winter) 2024)
Abstract

Extended Abstract
Introduction: Safflower seeds are rich in unsaturated fatty acids with a high capacity for peroxidation, which have a high potential to reduce germination and seed vigor during the storage period. Therefore, Introducing appropriate methods to preserve or improve their germplasm during storage would be advantageous. The aim of this study was to investigate the effects of seed priming on germination and vigor of safflower seeds (Sofeh and Sina cultivars).
Materials and Methods: A three-factor experiment was conducted in a completely randomized design with three replications before and after artificial deterioration. The experimental factors included controlled deterioration of seeds at 45°C in six levels (no deterioration, 1, 2, 3, 4, and 6 days) and priming in four levels (no prime, hydropriming, salicylic acid 50 mg/l and sodium chloride 5 percent).
Results: Artificial aging strongly and linearly reduced the germination ability of safflower seeds, and germinability and seed vigor reach zero in a time interval which lasts between 2.5 to 4.5 days (depending on the treatment and the investigated trait). The use of priming prior to artificial aging was more advantageous than priming after artificial aging. In addition, priming with salicylic acid was more useful compared to other priming treatments.
Conclusion: Priming of safflower seeds before storage would result in the extended shelf-life of the stored seeds while also preserving the seed germination potential. 

Highlights:
  1. The effect of priming on germination and vigor of safflower seeds before and after artificial deterioration was compared and investigated.
  2. The effect of priming before and after artificial deterioration on the improvement of safflower seed quality varied in different cultivars.

Zahra Rezaei, Zeynab Roein, Atefeh Sabouri, Somayeh Hajinia,
Volume 11, Issue 1 ((Spring and Summer) 2024)
Abstract

Extended abstract
Introduction: Seed germination and seedling establishment are the most sensitive stages in the life cycle of a plant. Among the environmental factors, water potential is an important factor affecting the seed germination of various plants. This research aims to evaluate the effects of water potential on germination indices and quantify the effect of water potential the germination responses of Thymus medicinal plant seeds.
Materials and Methods: A factorial experiment was carried out in the form of a completely randomized design with four replications at the laboratories of the Department of Agronomy and Plant Breeding, Ilam University in the winter of 2023. The factors of the experiment included two types of Thymus (Thymus daenensis and T. vulgaris) and water potential stress induced by polyethylene glycol (PEG-6000) at six levels (0, -0.1, -0.3, -0.5, -0.7, and -0.9 MPa).
Results: The results showed as the water potential decreased to -0.1, -0.3, -0.5, and -0.7 MPa, seed germination percentage respectively went down by 8.43, 43.26, 61.80, and 88.76% in T. daenensis and 19.74, 44.08, 61.18 and 92.76% in T. vulgaris compared with water potential stress-free conditions. Also, T. vulgaris did not germinate at a water potential of -0.9 MPa, whereas some seeds of the T. daenensis plant germinated under this condition. The highest germination rate in both T. daenensis and T. vulgaris species was observed under stress-free conditions, and there was significant difference between the species. Four statistical distributions including normal, logistic, log-logistic, and Gumbel, were compared to quantify the germination response of Thymus to water potential. In order to evaluate the models, corrected Akaike information criterion (AICc), the coefficient of determination (R2adj), and root mean square error (RMSE) were used. The lowest AICc index values for T. daenensis were associated with the log-logistic and logistic distributions (-2012 and -2006), and the Gumbel distribution (-1665) in T. vulgaris, suggesting the superior distributions for quantifying Thymus's response to water potential. Estimation of parameters related to the hydrotime model showed that T. daenensis species had a lower hydrotime constant value (θH)(23.91 MPa hour-1) compared with T. vulgaris (28.06 MPa hour-1), which indicated a higher germination rate in T. daenensis. The value of ψb(50)  in T. daenensis (-0.455 MPa) was lower than that of T. vulgaris (-0.388 MPa). Therefore, based on the results, T. daenensis showed a greater ability to tolerate drought during the germination stage.
Conclusions: In general, the results showed that the effects of water potential stress on the germination components of T. vulgaris were greater than those of T. daenensis, and according to the parameters of the hydrotime model, T. daenensis was more tolerant than T. vulgaris.

Highlights:
  1. The best distribution in the hydrotime model was determined for predicting Thymus daenensis and Thymus vulgaris seed germination under water potential stress conditions.
  2. The threshold level of water potential stress causing a significant decrease in the germination components of Thymus daenensis and Thymus vulgaris was determined.
  3. Based on the hydrotime model, Thymus species was determined to be more tolerant to water potential stress during germination.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.