Search published articles


Showing 2 results for Rastgoo

Sajad Mijani, Mehdi Rastgoo, Ali Ghanbari, Mehdi Nassiri Mahallati,
Volume 7, Issue 2 ((Autumn & Winter) 2021)
Abstract

Extended Abstract
Introduction: Tubers are considered as the most important vegetative organs in reproduction of purple nutsedge, as one of the most troublesome weeds worldwide. Therefore, it is great of importance to investigate the properties of the tuber response to the surrounding environment such as absorption and loss of water. Water uptake is the first step in the sprouting process, though the pattern of water uptake by purple nutsedge tubers has not been documented. Loss of water in tubers is one of the potent factors in reducing their ability to sprouting. Three separate experiments were carried out to investigate the absorption and loss of water content of purple nutsedge tubers.
Material and Methods: In the first experiment, the tubers were placed in a water bath at temperatures of 10, 20, 30, and 40 ° C. Then, the weight of the tubers was measured at different times (24 till 3600 minutes). The water uptake percentage of tubers at different temperatures was studied by fitting the Peleg model. In the second experiment, the initiation day of sprouting was investigated at constant temperatures of 10, 20, 30, and 40 ° C. In the third experiment, water loss and sprouting percentage of tubers were evaluated in two conditions refrigerator (4° C) and room (22 to 25 ° C).
Results: The results showed that the initial water content of tubers was 42% and absorbed 10% extra water after being immersed in water. The water uptake behavior was based on the Peleg model at two stages: (1) rapid uptake (less than 420 minutes (7 hours), and (2) a low uptake with a gentle slope afterward. In the Peleg model, the parameters K1 (minutes *.%weight -1) and K2 (%-1) are water absorption rate and water absorption capacity, respectively. The K1 parameter was negatively against temperature. The highest and lowest values were 49.56 and 28.55 at 10 and 40 ° C, respectively. On the other hand, the trend of the K2 was constant (0.1) at 10-30 °C but was 0.08 at 40 °C. The two-parameter Hyperbola model was superior to the Peleg and predicts the highest water absorption and time to 50 percent water absorption parameters. The results showed that sprouting of purple nutsedge tubers at 10, 20, 30, and 40 °C occurred after 14.44, 6.57, 3.24, and 3.12 days, respectively. Keeping the tubers in the room (22-25 °C) and refrigerator (4 °C), sprouting stopped after 3 and 9 months, respectively. The time required for 50% reduction of sprouting in the room and refrigerator was estimated to be 1.3 months (39 days) and 5.12 months (154 days), respectively. The time required for 50% loss weight of tubers in the room and refrigerator was 1.981 months (59 days) and about 6 months (180 days), respectively. Overall, weight loss (water loss) up 11.85%, resulted in 50% reduction in tuber sprouting.
Conclusion: Maximum water uptake in tubers occurred in less than 420 minutes (seven hours) at all temperatures. Slow sprouting in tubers at low temperatures is not associated with an obstacle in water absorption. Tubers lost half of their sprouting ability by losing water about 12%. On the other hand, the results show that the tubers at cool temperatures (4 °C) lose their water and sprouting capacity less than the ambient temperature (22 to 25 °C).

Highlights:
1- Determination of water absorption pattern on purple nutsedge tubers.
2- Effect of storage location in reducing water and sprouting ability of purple nutsedge tubers.

Sajad Mijani, Mehdi Rastgoo, Ali Ghanbari, Mehdi Nassiri Mahallati,
Volume 8, Issue 1 ((Spring and Summer) 2021)
Abstract

Extended abstract
Introduction: Purple nutsedge (Cyperus rotundus L.) is one of the problematic weeds worldwide prevalent in tropical and subtropical regions. Tubers are major tools through which purple nutsedge is propagated, whereas its seeds have a low ability to germinate. Therefore, evaluation of the response of tubers against environmental agents is great of importance to know the germination and emergence time. Germination, in turn, is mostly affected by temperature, among other environmental factors. Various models that are recognized as the Thermal Time model have been introduced to describe the seed germination pattern against temperature. Since predicting the emergence of reproductive organs through the modeling is great of importance for improving the control strategies; the present study was carried out to investigate the response of tuber sprouting of purple nutsedge (Cyperus rotundus) against temperature using thermal time models.
Material and methods: The experiment was carried out as a randomized complete block design with three replications in a germinator. Each replicate was placed on a separate shelf. For each replicate, 15 tubers were placed inside a 20 cm Petri dish on a filter paper and then 100 ml of water was added. The experiment was performed separately for constant temperatures of 10, 15, 20, 25, 30, 35, and 40 °C in absolute darkness. To analyze the data as modeling, five thermal time models were evaluated based on the statistical distributions of normal, Weibull, Gumble, logistic and log logistic. Indices such as R2, RMSE, RMSE%, and AICc were used to evaluate the models.
Results: The results showed that all models predicted the germination response of purple nutsedge tuber with high accuracy (R2 = 0.95). A comparison of models based on AICc values showed significant superiority of the Gumble model over other models. According to this index, there was no difference between logistic and log logistic models with normal. Among the models, Weibull was identified as the most inappropriate model. Different models estimated the final germination (Gmax) between 0.93 to 0.94 (93 to 94%). The base temperature was estimated through different models from 7.10 to 7.47 °C. Among the models, the model based on the Gumble distribution proved the skew to the right of the thermal time and Tm. According to the Gumble model, the thermal time parameters required to reach 50% germination (θT (50)) equals 123.8 ° C day and the maximum temperature for germination at 50% probability (Tc (50)) was estimated to be 46.10 ° C.
Conclusion: the thermal time model based on the Gumble probability distribution was most plausible among the models. Also, a distributed right skewness related to the thermal time and Tm was proved through the Gumble model. The parameters obtained from the Gumble model can be used to predict the sprouting of purple nutsedge tubers.
 
Highlights:
  1. Thermal time models were evaluated for prediction of tuber sprouting of purple nutsedge.
  2. The thermal time model based on the Gumble distribution was superior over the normal distribution.
  3. Thermal time and Tm for tuber sprouting of purple nutsedge were distributed as right skewness.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.