Search published articles


Showing 2 results for Paravar

Arezoo Paravar, Saeideh Maleki Farahani, Alireza Rezazadeh,
Volume 9, Issue 2 ((Autumn & Winter) 2023)
Abstract

Extended abstract
Introduction: Lallemnatia ibercia (Dragon’s head) is an annual herb, which belongs to the Lamiaceae family. Nowadays, its seed is widely used in food and pharmaceutical industries due to its high mucilage and oil content. Soil moisture, nutrition, light, and temperature of the maternal environment play an important role in plant growth. However, the effect of soil moisture on yield and seed quality indices is greater during seed development. The positive effects of maternal plant nutrition with mycorrhizal inoculation can influence the quality improvement of the seeds developed under water deficit conditions. The reason for the quality improvement of the seeds developed under mycorrhizal inoculation condition is reported to be their water balance under water deficit conditions and as a result, more absorption of water and nutrients. Nutrient uptake by the maternal plant can play an important role in improving the germination and quality characteristics of the seeds developed under drought stress.
Materials and Methods: A field experiment was conducted in a completely randomized design with three replications at the Seed Science and Technology Laboratory of the College of Agriculture, Shahed University during f 2018-19 and 2019-20 years. Experimental treatments included irrigation regime (30, 60 and 90% of depletion of available soil water (ASW)) and mycorrhizal inoculation (non-inoculation and inoculation).
Results: The results showed that a reduction in soil moisture in the maternal environment decreased germination percentage and seed quality.  Germination percentage (51.20%) germination rate (7%), seed vigor index (27.70%), seedling length (28.3%), seedling dry weight (34.80%), seed mucilage (75.40%), as well as seed nutrients (27.30%), seed oil (14.60%) and catalase (35.25%) and ascorbate peroxidase (25.70%) enzymes activities enhanced in the seeds developed under 60% depletion of available soil water and application of mycorrhizal compared to control (30% depletion of available soil water and without mycorrhizal). Compared with the 30% depletion of available soil water and without mycorrhizal, mean germination time (17%) and lipid peroxidation (41.10%) increased under the 90% depletion of available soil water and without fertilizer mycorrhizal.
Conclusions: According to the results of this study, the irrigation regime of 60% available soil water depletion of maternal plants leads to the reduction of seed quality. However, the nutrition of maternal plants by mycorrhizal inoculation effectively improved the quality of seeds developed under water deficit due to the absorption of water and nutrients.

Highlights:
  1. Germination and seedling growth indices, quality and biochemical characteristics of the Lallemantia iberica seeds developed under different conditions of irrigation regime were investigated.
  2.  The effect of mycorrhiza on nutrient uptake, oil content, and antioxidant enzyme activity of the seeds developed under different irrigation regimes was investigated.
  3. The extent of damage to the lipid structures of cells in the seeds developed under different irrigation regimes and mycorrhiza fertilizer was investigated.

Arezoo Paravar, En Saeideh Maleki Farahani, En Alireza Rezazadeh,
Volume 11, Issue 1 ((Spring and Summer) 2024)
Abstract

Extended abstract
Introduction: Production of high-quality seeds is a major concern in the agriculture industry. The lifespan of a seed, which can extend over several decades, is essential for safeguarding the plant's genetic resources. Storage conditions, including seed moisture level, relative humidity, gases (such as oxygen, nitrogen, and carbon dioxide), and temperature, are the primary factors that determine seed lifespan. Among these aging treatment, oxygen has the most detrimental effect on seed germination, storage metabolic activities, and enzyme activity of dried seeds. Lalemantia iberica and Lallemantia royleana seeds contain high levels of fatty acids, especially linolenic acid (56-67%), which have significant beneficial effects on health. However, a large number of L. iberica and L. royleana seeds deteriorate due to inadequate storage conditions by most farmers. The aim of this study is to investigate the effects of different storage conditions, especially natural and controlled aging, aging with oxygen, and nitrogen on germination, chemical activities, metabolic reserves, and enzymatic activities of dry L. iberica and L. royleana seeds.
Materials and Methods: A factorial experiment based on a completely randomized design with four replications was carried out in the seed science laboratory at the Faculty of Agriculture, Shahid University in 2021. The experimental treatments included storage environments (control, natural aging, controlled aging, and aging with oxygen and nitrogen pressure) and plant species (Lallemantia iberica and Lallemantia royleana).
Results: The results indicated that aging with oxygen had the most detrimental impact on the germination rate, seed germination, reservoirs content, and the activity of alpha and beta amylase enzymes, compared with controlled and natural aging in both species. Conversely, the highest levels of electrical conductivity, hydrogen peroxide, lipid peroxidation, and saturated and unsaturated fatty acids were observed in dry seeds stored under oxygen aging conditions. In comparison to artificial aging (controlled aging and oxygen aging), seeds stored under natural aging conditions exhibited the highest germination rate, storage compound content, and α amylase enzyme activity. Throughout the storage process, it was observed that the deterioration rate was higher in the dry seeds of L. iberica compared with L. royleana.
Conclusions: Aging with oxygen can be regarded as a rapid artificial aging method for assessing the longevity of dry seeds. Conversely, the use of low temperature and humidity conditions in natural aging can be considered a practical method for preserving the quality and longevity of seeds. Due to their high content of storage compounds (sucrose, starch, and total sugar content), L. royleana seeds can be stored for extended periods.

Highlights:
  1. Seed aging led to an increase in biochemical indices such as lipid peroxidation, hydrogen peroxide, and saturated and unsaturated fatty acids.
  2. The rate of deterioration in dry seeds of L. iberica was higher than those of L. royleana.
  3. The content of storage compounds and the activity of amylase enzymes were higher in L. royleana seeds compared with L. iberica.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.