In order to evaluate the effect of seed moisture content at harvesting time and drying temperature on soybean seed germination characteristics, an experiment was conducted as factorial (2×3×2) based on Randomized Complete Block Design with three replications in Karaj and Moghan areas. The first factor was cultivar with two levels (Williams and L17), the second factor was seed moisture content with three levels (15, 20 and 25%) and the third factor was drying temperature with two levels (30 and 45 °C). Results show that the germination percentage of producing seeds in Karaj (81.3%) were higher than Moghan area (77.4%). The difference between the germination percentage of dried seeds at 30 and 45◦C with initial seed moisture content of 15% was about 5.5%, while this difference for seeds with 25% initial moisture content was about 18.5%. There was no significant difference between seedling vigor index of seeds with 15% moisture content of two cultivars that have been produced in Karaj, but at 20% moisture content, the seedling vigor index in Williams cultivar (139.7) was higher than L17 cultivar (107.3). The highest (51.42 µsm cm-1 g-1) electrical conductivity of seed leakage soluble was obtained from the L17 cultivar with 25% moisture content and 45◦C and the lowest (28.46 42 µsm cm-1 g-1) rate of it was observed in Williams cultivar with 20% moisture content and 30◦C. According to these results, we must harvest and dry soybean seeds at 30◦C when its moisture content reached under 20%.
In order to assess seed deterioration of soybean at Ardebil province, this study was conducted as a factorial experiment based on randomized complete block design in 2014. The treatments consisted of germination ability, seed moisture content and seed storing conditions. Germination ability treatment was concluded of three germination levels: 80%, 85% and 90%. Also, three rates of seed moisture content including 10%, 12% and 14%; and two seed storing conditions including seed storage of Moghan and controlled storage were considered as second and third treatments. The results indicated that seed quality significantly reduced by increasing the seed moisture content up to 14% and this moisture content was determined as inappropriate moisture for soybean seed storage. Seeds with high moisture content showed significantly lower normal seedlings percent, germination rate and seedling vigor indices. However, there was no significant difference between 12% and 10% seed moisture contents, so it can be concluded that 12% seed moisture content is proper moisture for soybean seed storage. According to the results, enhancement of seed moisture content more than 12% will result in more accelerated deterioration of soybean seed, in a way that seeds with higher moisture content, especially at inappropriate seed storage conditions will lose their quality and will cause yield reduction at field due to low plant density aroused from inadequate seedling emergence.
Efficient seed germination and rapid and uniform seedling emergence are important in commercial agriculture. Therefore, the use of strategies to improve germination and seedling establishment is necessary for increasing productivity. Hydropriming has been suggested as a simple pre-germination strategy to improve seed performance. In this study, the effects of different durations of hydropriming (10, 24, 48 and 72 hours) at different temperatures (10 and 25 ˚C) compared to unprimed seeds on the vigor and germination performance of five milk thistle accessions (Ahvaz, Sari, Esfahan, Dezfol and Gachsaran) were evaluated. An experiment was conducted as a factorial experiment based on a completely randomized design with three replications. Germination performance was evaluated by final germination percentage, mean daily germination, mean germination time, the coefficient of germination, Timson's index, time to reach 50% the final germination percentage, germination value, coefficient of uniformity of germination, length and dry weight of seedlings and vigor index. The results show that germination capacity, germination rate and seedling vigor indexes increase significantly in hydro primed seeds at a temperature of 10˚C, whereas a decrease in hydro primed seeds at a temperature of 25˚C. Our results also show that the efficacy of hydropriming on seedling emergence and vigor traits depends on the priming duration and temperature. Hydropriming at 10˚C indicated the most effective on germination indicators and seedling vigor when compared to unprimed seeds. In addition, the comparison of germination and growth indicators in different durations of hydropriming in five milk thistle accessions indicated that the best duration of hydropriming for Ahvaz and Gajsaran is 72h, for Sari and Dezfol is 48 and 72h and for Esfahan is 10 and 24h. Therefore, the effect of hydropriming on germination performance and seedling vigor depends on plant association and hydropriming time and therefore, the selection of the best condition for hydropriming will improve the seed germinability and vigor.
Page 1 from 1 |
© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research
Designed & Developed by : Yektaweb