Search published articles


Showing 8 results for Ghanbari

Majid Ghanbari, Seyed Ali Mohammad Modarres-Sanavy, Ali Mokhtassi Bidgoli, Parniyan Talebi-Siah Saran,
Volume 4, Issue 2 ((Autumn & Winter) 2018)
Abstract

This study was conducted to evaluate the effect of hydropriming and seed aging on germination and enzymatic properties of pinto bean under salinity stress as factorial based on a completely randomized design with four replications. Two groups of seeds (i.e., non-aged and aged seeds), two hydropriming treatments (i.e., hydro primed and unprimed seeds) and six salinity treatments (i.e., 0, 2, 4, 6, 8 and 10 dS/m) were the experimental factors. The results showed that the highest mean time and percentage of germination, plumule length and vigor were observed in the control (i.e., distilled water) and hydropriming treatments. Maximum root length and percentage of seedling water were obtained in the control (i.e., distilled water) and aged seed treatments. In addition, in terms of radicle dry weight, the highest amount was observed in salinity of 4 dS/m and non-aged hydro primed seeds. The highest plumule dry weight was observed in salinity of 6 dS/m and allometric index in salinity of 8 dS/m for non-aged seed and aged seed without hydropriming, respectively. An increase in the levels of salinity stress and aging the seeds increased the malondialdehyde and reduced the activity of germination, mean time and germination percentage, and seedling growth. Seed hydropriming reduced the peroxidation of the cell membrane and generally improved the speed and uniformity of germination, aged and natural seeds vigor under both salinity and optimum conditions. As a result, hydropriming can increase the tolerance of bean seeds to salinity at the germination stage and increase the germination capacity of stored seeds for cultivation.
 
Highlights:
  1. The effect of hydropriming on recovering the power of seed germination of pinto bean has been studied under the salinity condition.
  2. An attempt has been made to determine the effect of hydropriming on increasing the tolerance of pinto bean seeds to storage and salinity stress condition.
  3. The effect of pinto bean storage on biochemical changes and enzyme activity has been studied in salinity stress condition.

Majid Ghanbari, Seyed Ali Mohammad Modarres-Sanavy, Ali Mokhtassi-Bidgoli,
Volume 5, Issue 1 ((Spring and Summer) 2018)
Abstract

Extended abstract
Introduction: Indian Cheese Maker, an herbage plant, belongs to potatoes family and grows in areas such as Pakistan, Afghanistan, India and Iran. Given its medicinal properties, Indian Cheese Maker plays an important role in traditional Iranian medicine. Lack of dormancy is one of the most desirable agronomic characteristics of its seeds, which is necessary to achieve the highest amount of germination, emergence and plant establishment. Seed germination capacity of medicinal herbs is typically low, which is due to the presence of seed dormancy in these plants.
Material and Methods: This study was conducted to evaluate the effect of disinfection and pre-chilling on germination and enzymatic properties of different Indian cheese maker landraces. The experiment was conducted as a factorial based on a completely randomized design with three replications during 2015-16 at the Laboratory of the Department of Agronomy, Tarbiat Modares University. Two treatments consisting of seeds disinfected at two levels (no application and 30 min with hypochlorite solution 5%), two pre-chilling treatments (no application and 1 week pre-chilling) and four Indian cheese maker landraces (Fanuj, Khash, Saravan and Sarbaz) were the experimental factors. For the purpose of suitable pre-chilling to activate the germination enzymes, the seeds were placed in a coated container, on an aluminum foil with holes in it, without direct contact and close to distilled water at 4 °C. 25 seeds were placed in each sterile petri dish with Watten filter paper 42. Five ml of distilled water was added to each petri. After applying the treatments, the petri dishes were covered with parafilm and were placed in a germinator at 25 °C in the light for 14 days.
Results: The results showed that in the Fanuj, Khash and Saravan landraces, the highest values of final germination percentage, germination rate, mean daily germination and mean time germination were obtained during disinfection of 30 minutes and pre-chilling of one week. However, the Sarbaz landrace showed a reverse trend and indicated the highest values of these traits in non-application of seed disinfection and pre-chilling. In terms of the activity of germination enzymes, the highest values of α and β amylase (0.74 and 0.59 μmol/ml/min) were obtained in the Fanuj landrace with 30-minute disinfection with sodium hypochlorite and one-week pre-chilling.
Conclusion: According to the results, the Fenuj, Khash and Saravan landraces of Indian Cheese Maker showed positive reaction to disinfection with sodium hypochlorite for 30 minutes and pre-cooling for one week. The same treatments increased the properties and activity of germination enzymes. The Sarbaz landrace did not react positively to the treatments applied and reacted negatively in terms of the properties and activity of germination enzymes. The reason for this behavior in the Sarbaz landrace could be attributed to lower annual rainfall, as well as higher temperature, which causes the hardening of the seed’s cover and the increase in the values of germination inhibiting factors, creating seed dormancy, which allows it to survive hot and dry periods. Generally speaking, the use of sodium hypochlorite and pre-chilling can be recommended to break seed dormancy of most Indian Cheese Maker landraces.
 
 
Highlights:
  1. Investigating the effect of mucilage inside the capsule on the inhibition of Indian cheese maker’s germination
  2. Assessing the activation pattern of germination enzymes to break dormancy of Indian cheese maker’s seeds
  3. Investigating the reaction of different Indian cheese maker landraces to dormancy-breaking protocols applied

Hosein Sarani, Ebrahim Izadi, Ali Ghanbari, Ali Rahemi,
Volume 6, Issue 1 ((Spring and Summer) 2019)
Abstract



Extended Abstract
Introduction: In recent years, Japanese morning glory has been recognized as a new weed in some soybean cultivation areas in the Province of Golestan. Japanese morning glory, an annual herbaceous plant, belongs to Convolvulaceae family. Germination is the first step in the competitiveness of a weed in an ecological niche. Among the factors influencing seed germination, temperature and light are the most important environmental factors. The relationship between temperature and germination rate is mainly determined by nonlinear regression, and various models such as dent-like, segmented, beta, and second-order major models are used for this purpose. In this study, we examined the aspects of germination biology of this weed under the influence of temperature and light.
Materials and Methods: In order to investigate the effect of temperature and light on germination of Japanese morning glory, two separate experiments were conducted. Treatments included constant temperature at 7 levels (10, 15, 20, 25, 30, 35, 40) in the first experiment and alternating temperature at 6 levels (30/25, 10/15, 30/20, 35/25, 40/30, 45/35) and light conditions (14 hours of brightness 250 μmoles/m-2-sec-1) and darkness in the second experiment based on a completely randomized design with four replications. The number of germinated seeds was taken up to 4 days after stopping germination every day. Percentage and speed of germination and time reaching 50% germination were calculated. Three models of dent-like, segmented lines and beta were used to determine the cardinal temperature between the temperature and germination rate.
Results: The results showed that temperature had a significant effect on percentage, speed and time taken to reach 50% (D50) of germination of Japanese morning glory. The highest percentage of germination (95%) and germination rate (19.80 seeds per day) were observed in the alternating temperature of 20/30 ° C treatment, respectively. The lowest percentage of germination (83.33%) was observed at alternating temperatures 25/35 °C, and the lowest germination rate (15.10 seeds per day) was observed at 10-20 °C. The segmented lines, dent-like and beta were best fit based on the highest R2adj 0.95, 0.96 and 0.95, respectively. Light had no significant effect on germination, so that germination occurred under both light and dark conditions. According to the results, Japanese morning glory is able to germinate at a wide range of constant and alternating temperatures, although germination is faster at warmer temperatures. On the other hand, the lack of light for germination is another advantage that increases germination, competition, and expansion in agronomic environments.
Conclusion: The findings of the present study suggest that the highest percentage of germination and rate of germination were observed in alternating temperatures of 20/30 °C respectively. Among the nonlinear regression models, the dent-like model represented the best model for describing the germination rate against the temperature in Japanese morning glory. It seems that this weed has better germination at warmer temperatures. Probably from mid-spring following warmer weather, and upon the availability of water, this weed is in a good situation to germinate and compete. It was also found that light had no significant effect on the germination of this weed.

Highlights:
  1. Non-photoblastic seeds
  2. Superiority of dent-like model for predicting germination of Japanese morning glory

Majid Ghanbari, Ali Mokhtassi-Bidgoli, Kamran Mansour Ghanaei-Pashaki, Soheil Karamniya,
Volume 7, Issue 1 ((Spring and Summer) 2020)
Abstract



Extended abstract
Introduction: Legumes are the most important source of plant protein and Mung bean has a high nutritional value for humans, as it produces seeds containing high protein percentage. The major problem of salinity in seed germination of higher plants is due to excessive amounts of sodium chloride, osmotic pressure, disruption of nutrient uptake and transport, and direct effects of ionic toxicity on the membrane and enzymatic systems that in turn reduce germination. External use of methyl jasmonate can modulate the effects of various stresses, such as salinity and drought, by increasing the antioxidant activity of the seed. Therefore, the purpose of this research was to evaluate the effect of methyl jasmonate and salinity stress on germination and enzymatic properties of Mung bean.
Material and Method: This study was conducted as factorial based on a completely randomized design with three replications during 2015-16 at the laboratory of Department of Agronomy, Tarbiat Modares University. The experimental treatments included four methyl jasmonate solution (0, 50, 100 and 150 mM) and four salinity stress levels (0, 2, 4 and 6 dS/m salinity from NaCl). Petri dishes were placed in a germinator at 25 ° C and in full darkness for 14 days. In this experiment, germination rate and percentage, time to reach 50% germination, alpha and beta amylase, catalase and peroxidase were measured.
Results: The results of the experiment showed that the lowest rate of slope and final germination percentage were obtained in 50 and 100 mM solutions of methyl jasmonate. In terms of T50, an increase of 4.7 days was observed per one dS/m increase in salinity stress and the lowest T50 was estimated at a methyl jasmonate solution concentration of 78.68 mM. In terms of the activity of germination enzymes, reduction of 0.031 μmol/ml/min per 1 dS.m increase in salinity stress and the highest amount of α-amylase were estimated 72.6 μmol/ml/min at a methyl jasmonate solution concentration of 73.33 mM. Also, the lowest activity of β-amylase enzyme was 0.79 μmol/ml/min at a concentration of 5.6 dS/m salinity stress and the highest activity of β-amylase enzyme was estimated to be 1.7 μmol/ml/min at a methyl jasmonate solution concentration of 86.67 mM. The highest activity of catalase (25.7 ∆A/mg protein/min) was observed at 14.72 dS/m salinity stress and the lowest activity of catalase enzyme (8.9 ∆A/mg protein/min) was estimated at 5.88 mM methyl jasmonate solution. The highest activity of peroxidase enzyme (22.06 ∆A/mg protein/min) was at 24.3 dS/m salinity stress and the lowest activity of the enzyme peroxidase (2.5 ∆A/ mg protein/min) was determined at a methyl jasmonate solution concentration of 266.66 mM.
Conclusions: In general, pre-treatment of methyl jasmonate can reduce the germination time, increase the rate of germination and reduce the oxidative stress in salt stress conditions by improving the activity of germination enzymes, increasing the activity of enzymes, increasing the activity of hydrolyzing enzymes and increasing the easy availability of seedlings to nutrients during germination.

 
Highlights:
1- Germination rate and percentage and morpho-physiological changes of Mung bean seed as affected by methyl jasmonate were investigated.
2- The role of alpha and beta amylase germination enzymes in accelerating the production of Mungbean seedlings under saline conditions were estimated.
3- Methyl jasmonate- induced catalase and peroxidase enzymes activity in resistance to salinity stress were estimated.

Sajad Mijani, Mehdi Rastgoo, Ali Ghanbari, Mehdi Nassiri Mahallati,
Volume 7, Issue 2 ((Autumn & Winter) 2021)
Abstract

Extended Abstract
Introduction: Tubers are considered as the most important vegetative organs in reproduction of purple nutsedge, as one of the most troublesome weeds worldwide. Therefore, it is great of importance to investigate the properties of the tuber response to the surrounding environment such as absorption and loss of water. Water uptake is the first step in the sprouting process, though the pattern of water uptake by purple nutsedge tubers has not been documented. Loss of water in tubers is one of the potent factors in reducing their ability to sprouting. Three separate experiments were carried out to investigate the absorption and loss of water content of purple nutsedge tubers.
Material and Methods: In the first experiment, the tubers were placed in a water bath at temperatures of 10, 20, 30, and 40 ° C. Then, the weight of the tubers was measured at different times (24 till 3600 minutes). The water uptake percentage of tubers at different temperatures was studied by fitting the Peleg model. In the second experiment, the initiation day of sprouting was investigated at constant temperatures of 10, 20, 30, and 40 ° C. In the third experiment, water loss and sprouting percentage of tubers were evaluated in two conditions refrigerator (4° C) and room (22 to 25 ° C).
Results: The results showed that the initial water content of tubers was 42% and absorbed 10% extra water after being immersed in water. The water uptake behavior was based on the Peleg model at two stages: (1) rapid uptake (less than 420 minutes (7 hours), and (2) a low uptake with a gentle slope afterward. In the Peleg model, the parameters K1 (minutes *.%weight -1) and K2 (%-1) are water absorption rate and water absorption capacity, respectively. The K1 parameter was negatively against temperature. The highest and lowest values were 49.56 and 28.55 at 10 and 40 ° C, respectively. On the other hand, the trend of the K2 was constant (0.1) at 10-30 °C but was 0.08 at 40 °C. The two-parameter Hyperbola model was superior to the Peleg and predicts the highest water absorption and time to 50 percent water absorption parameters. The results showed that sprouting of purple nutsedge tubers at 10, 20, 30, and 40 °C occurred after 14.44, 6.57, 3.24, and 3.12 days, respectively. Keeping the tubers in the room (22-25 °C) and refrigerator (4 °C), sprouting stopped after 3 and 9 months, respectively. The time required for 50% reduction of sprouting in the room and refrigerator was estimated to be 1.3 months (39 days) and 5.12 months (154 days), respectively. The time required for 50% loss weight of tubers in the room and refrigerator was 1.981 months (59 days) and about 6 months (180 days), respectively. Overall, weight loss (water loss) up 11.85%, resulted in 50% reduction in tuber sprouting.
Conclusion: Maximum water uptake in tubers occurred in less than 420 minutes (seven hours) at all temperatures. Slow sprouting in tubers at low temperatures is not associated with an obstacle in water absorption. Tubers lost half of their sprouting ability by losing water about 12%. On the other hand, the results show that the tubers at cool temperatures (4 °C) lose their water and sprouting capacity less than the ambient temperature (22 to 25 °C).

Highlights:
1- Determination of water absorption pattern on purple nutsedge tubers.
2- Effect of storage location in reducing water and sprouting ability of purple nutsedge tubers.

Sajad Mijani, Mehdi Rastgoo, Ali Ghanbari, Mehdi Nassiri Mahallati,
Volume 8, Issue 1 ((Spring and Summer) 2021)
Abstract

Extended abstract
Introduction: Purple nutsedge (Cyperus rotundus L.) is one of the problematic weeds worldwide prevalent in tropical and subtropical regions. Tubers are major tools through which purple nutsedge is propagated, whereas its seeds have a low ability to germinate. Therefore, evaluation of the response of tubers against environmental agents is great of importance to know the germination and emergence time. Germination, in turn, is mostly affected by temperature, among other environmental factors. Various models that are recognized as the Thermal Time model have been introduced to describe the seed germination pattern against temperature. Since predicting the emergence of reproductive organs through the modeling is great of importance for improving the control strategies; the present study was carried out to investigate the response of tuber sprouting of purple nutsedge (Cyperus rotundus) against temperature using thermal time models.
Material and methods: The experiment was carried out as a randomized complete block design with three replications in a germinator. Each replicate was placed on a separate shelf. For each replicate, 15 tubers were placed inside a 20 cm Petri dish on a filter paper and then 100 ml of water was added. The experiment was performed separately for constant temperatures of 10, 15, 20, 25, 30, 35, and 40 °C in absolute darkness. To analyze the data as modeling, five thermal time models were evaluated based on the statistical distributions of normal, Weibull, Gumble, logistic and log logistic. Indices such as R2, RMSE, RMSE%, and AICc were used to evaluate the models.
Results: The results showed that all models predicted the germination response of purple nutsedge tuber with high accuracy (R2 = 0.95). A comparison of models based on AICc values showed significant superiority of the Gumble model over other models. According to this index, there was no difference between logistic and log logistic models with normal. Among the models, Weibull was identified as the most inappropriate model. Different models estimated the final germination (Gmax) between 0.93 to 0.94 (93 to 94%). The base temperature was estimated through different models from 7.10 to 7.47 °C. Among the models, the model based on the Gumble distribution proved the skew to the right of the thermal time and Tm. According to the Gumble model, the thermal time parameters required to reach 50% germination (θT (50)) equals 123.8 ° C day and the maximum temperature for germination at 50% probability (Tc (50)) was estimated to be 46.10 ° C.
Conclusion: the thermal time model based on the Gumble probability distribution was most plausible among the models. Also, a distributed right skewness related to the thermal time and Tm was proved through the Gumble model. The parameters obtained from the Gumble model can be used to predict the sprouting of purple nutsedge tubers.
 
Highlights:
  1. Thermal time models were evaluated for prediction of tuber sprouting of purple nutsedge.
  2. The thermal time model based on the Gumble distribution was superior over the normal distribution.
  3. Thermal time and Tm for tuber sprouting of purple nutsedge were distributed as right skewness.

Majid Ghanbari, Seyed Ali Mohammad Modarres-Sanavy, Ali Mokhtassi-Bidgoli,
Volume 8, Issue 1 ((Spring and Summer) 2021)
Abstract

Extended Abstract
Introduction: Medicinal herbs are of particular importance in the treatment and prevention of diseases. Indian Cheese Maker has strengthening, liver repair, anti-inflammatory properties and is useful in the treatment of bronchitis, asthma, wounds, neurological disorders such as Parkinson's and Alzheimer's. Evaluation of seed quality as a propagating organ and the most important input for crop production and medicinal products has a special place in seed production, control and certification. Studying germination and biological properties of seeds of medicinal plants and methods of breaking dormancy in them are among basic and primary studies of domestication of medicinal plants. In the meantime, scrubbing with abrasives changes the integrity of the seed shell and allows the seeds to be permeable to water and gases. The researchers stated that the dormancy of seeds containing inhibitory metabolic materials can be reduced by removing the seed shell through mechanical scarification and osmopriming. For this purpose, the effect of scarification and potassium nitrate on germination and enzymatic properties of Indian Cheese Maker was evaluated.
Material and Method: This study was conducted as factorial based on a completely randomized design with three replications during 2015-16 at the laboratory of Department of Agronomy, Tarbiat Modares University. Potassium nitrate solution (0, 0.5, 1 and 1.5 mg.l-1 from KNO3), scarification (un-use and scarification with soft sanding) and osmopriming durations (8, 16, 24 and 32 hour) were experimental factors. The experiment was performed on Indian Cheese Maker seeds, landrace of Khash. Petri dishes were placed in a germinator at 25 ° C and in full lighting for 14 days. In this experiment, germination rate and percentage of germination, mean of germination time and daily germination, seed vigority, alpha and beta amylase were measured.
Results: The results of the experiment showed that in scarification, the highest germination percentage (69.47%) was obtained by seed priming at a concentration of 1.5 mg.l-1 potassium nitrate for 19 hours under abrasion. In scarification, germination rate increased at 16 and 32 hour, 0.62 and 1.17 No.day-1 for each mg.l-1 of potassium nitrate. The highest daily mean germination (0.15) was observed at 1.5 mg.l-1 potassium nitrate and 24 hour time and decreased to 8 hours mean germination time (7.39 days) by reducing pretreatment time. Also, the highest mean germination time (9.35 days) was observed in 32 hours pretreatment with potassium nitrate and the highest mean germination time in non-scarification condition (9.13 days) and in scarification condition decreased with mean of germination time (8.04 days). The activity of alpha and beta-amylase germination enzymes was affected by different concentrations of potassium nitrate and scarification and at high concentrations of potassium nitrate the activity of these enzymes decreased.
Conclusions: In general, application of potassium nitrate osmopriming, by improving the activity of germination enzymes and increasing seed germination properties of Indian Cheese Maker, increased the activity of hydrolyzing enzymes in the endosperm of germinated seeds, which reduced the mean germination time, increased germination rate and germination percentage. In general, seed scarification with low concentrations of potassium nitrate at 16 to 24 hours is recommended for breaking seed dormancy of Indian Cheese Maker.

 
Highlights:
  1. Germination rate and percentage of Indian Cheese Maker seed were monitored by osmopriming and scarification.
  2. The role of α and β amylase germination enzymes in accelerating dormancy breaking of Indian Cheese Maker was studied.
  3. Mean time and mean daily germination during the dormancy breaking process of Indian Cheese Maker were estimated.

Marzieh Besharati-Far, Gholamrez Khajoei-Nejad, Enayatollah Tohidi-Nejad, Jalal Ghanbari,
Volume 9, Issue 2 ((Autumn & Winter) 2023)
Abstract

Extended Abstract
Introduction: The application of different physical, chemical, and hormonal treatments mainly improves the germination of plants such as Dracocephalum kotschyi Boiss that have a seed dormancy mechanism. However, the interaction effects of germination, temperature, pretreatment with sulfuric acid, treatment with gibberellic acid and mycorrhiza on D. kotschyi germination have not been studied. Therefore, this experiment was performed in vitro to study the effect of seed pretreatment on improvement of germination characteristics of D. kotschyi seed.
Materials and Methods: The treatments studied in this experiment included (1) pretreatment of seed coat with sulfuric acid (97-95 %, for 10 min) and non-pretreatment (distilled water); (2) different treatments including treatments with concentrations of 0, 250, and 500 mg L-1 gibberellic acid (GA) or inoculation with mycorrhiza suspension in two separate experiments; and (3) two temperature treatments; room and refrigerator (about 4 °C) temperatures. The experiment was performed as a factorial based on a completely randomized design with four replications and different germination and initial seedling growth indices were examined.
Results: Gibberellic acid application at room temperature resulted in a significant increase in germination percentage and rate, whereas there was no significant difference between different levels of gibberellic acid and control at 4 °C. Similarly, the application of 250 mg L-1 GA improved seedling length and seedling vigor index at room temperature. While pretreatment with sulfuric acid significantly reduced germination and seedling growth indices compared to non-pretreatment, inoculation with mycorrhiza suspension in both pretreatment conditions compensated the germination reduction caused by sulfuric acid pretreatment by improving germination. Similarly, while the highest seedling length and vigor were obtained from mycorrhizal treatment at room temperature in non-pretreatment with sulfuric acid, at 4 ° C, inoculation with mycorrhiza also significantly reduced the loss in seedling length and seedling vigor index caused by sulfuric acid application.
Conclusion: According to the findings, it seems that the application of 250 mg L-1 GA at room temperature can be considered to improve the germination trend of D. kotschyi. Also, according to the results, treatment with mycorrhiza in sulfuric acid-free treatment at room temperature can be recommended as optimal conditions to improve the germination of D. kotschyi.

Highlights:
1- The interaction effect of chemical pretreatment with biological and hormonal treatments on the germination of Dracocephalum kotschyi was investigated.
2- The application of gibberellic acid at room temperature improved germination compared to the control, whereas it had no effect on germination at 4 °C.
3- Application of mycorrhiza reduced germination loss caused by pretreatment with sulfuric acid and led to maximum germination and seedling growth.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.