Search published articles


Showing 2 results for Aynehband

Habib Nejadgharebaghi, Esfandiar Fateh, Amir Aynehband,
Volume 6, Issue 1 ((Spring and Summer) 2019)
Abstract


Extended Abstract
Introduction: Strangle wort (Cynanchum acutum) is a perennial weed that could be propagated by seeds and vegetative organs. This brings about harvesting problems for some crops such as cotton, sugar beet, wheat and maize. In recent years, this weed has caused huge losses in sugar cane fields. The role of environmental conditions in weed management is highly important. Given this, the present study seeks to investigate the effects of environmental conditions (salinity and drought stress) on germination characteristics of strangle wort weed.
Materials and Methods: In order to investe the effect of different salinity and drought levels on strangle wort (Cynanchum acutum), two seperate experiments were conducted at Hakim Farabi Khuzestan Sugar Cane Research Institute in 2014-2015. The experimental design was completely randomized, with four replications. The treatments were different salinity levels at 8 levels (0, 2.5, 4.5, 6.5, 8.5, 12.5, 16.5 and 20.5ds/m) and the second experiment involved different drought stresses (osmotic potential) at 7 levels (0, -1, -3, -6, -9, -12 and -15 bar).
Results: The results of salinity stress experiment showed that with increases in salinity levels from 0 to 20.5 ds/m, germination, radicle length, plumule length and seedling weight decreased by 61, 80, 91 and 99%, respectively. The results of drought stress experiment showed that with increases in salinity levels from 0 to -15 bar, all studied traits, i.e., germination, radicle length, plumule length and seedling weight all decreased by 100%.
The analysis of variance results showed that in all the traits, there were significant differences between salinity and drought stress in 1% probability level. In this research, in the salinity experiment, in most of traits, especially radicle length quickly decreased after 8.5 ds/m salinity to higher levels and in drought stress experiment, after -3 bar to higher levels.
Conclusion: On the whole, it seems that sufficient information about this weed is vital for the adoption of the best control method, and gaining insights into how strangle wort responds to environmental stress, especially salinity stress, could help us to come up with new control approaches for this invasive weed. This can present a proper ecological approach that could be adopted in sustainable agriculture programs, which is environmentally sound as it decreases the use of chemical inputs. In addition, in order to lower the tolerance of this weed to salinity and especially drought stress, it is suggested that it be used for weed management programs. According to the results of this study, soil salinity higher than 8.5 ds/m and drought tension above than -3 bar can cause sizeable reduction in most traits (growth parameters) especially in root length. In most of the traits scrutinized, the tolerance of the weed to salinity and drought stress was 12.5 ds/m and -6 bar, respectively.
 

 
Highlights:

  1. Evaluation of germination characteristics of strangles wort under salinity and drought stress conditions.
  2. Determination of tolerance threshold of strangles wort germination seed to salinity and drought stress.

Habib Nejadgharebaghi, Esfandiar Fateh, Amir Aynehband,
Volume 8, Issue 1 ((Spring and Summer) 2021)
Abstract

Extended Abstract
Introduction: In Iran, the majority of research has been done on the depth of burial on crops and the effect of these factors on weeds resulted from seeds and rhziomes of seedlings has been less studied. Strangle Wort weed is one of the most problematic weeds in sugarcane fields, orchards, especially pistachio orchards, barren lands, and roads. Thus, this study aimed to find out the effect of different levels of burial depth and flood stress on the extent and quality of seedlings resulted from its rhizomes.
Material and Methods: Two separate greenhouse experiments based on completely randomized design with four replications were conducted in the experimental farm of Sugarcane Research Institute of Khuzestan province at 2014-2015 growing season. Flooding stress treatment included 7 levels of flooding stress (4, 8, 16, 24, 48, 72, and 96 flooding hours) and 6 levels of seed burial (1, 3, 5, 7, 10, and 15 cm) and rhizome burial depth treatment included 7 levels (1, 3, 5, 7, 10, and cm 15).
Results: With increasing levels of flood stress, all studied traits including root length, stem height, total dry matter biomass, shoot dry weight and root dry weight of strangle wort rhizomes decreased at 96 hours of waterlogged stress compared to the control by 63, 70, 59, 98 and 74 percent, respectively. Also, in second experiment, buried rhizomes of this weed with a length of 5 cm at a depth of 15 cm were not able to produce new seedlings.
Conclusion: According to these results, for proper management of this weed, highly contaminated areas in the field should be identified (especially in sugarcane fallow fields because at this time there is no weed control limitation). Then, the weed should be turned it into pieces smaller than 5 cm with plowing tools. Also, if possible, with suitable tools, transfer rhizomes should be transferred to a depth of more than 15 cm and integrated weed control management with drought and flooding stress and burial depth with at least two times of plowing could be implemented to control weed and prevent its expansion.

Highlights:
1-Germination characteristics of strangle wort seedlings under burial depths and flooding stress were evaluated.
2-The effect of burial depth and flooding stress on control and management of strangle wort was examined.
3-Precise determination of weed biology and weed germination behavior will lead to proper execution of weed control program.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.