Search published articles


Showing 5 results for Ansari

Sayyed Ali Tabatabaei, Omid Ansari,
Volume 3, Issue 1 ((Spring and Summer) 2016)
Abstract

The objective of this research was to evaluate the effect of salicylic acid and gibberellic acid on germination characteristics and changes of proline, protein and catalase activity of Brassica napus seedlings under Cu(SO4) stress. The experimental design was factorial with complete randomized design as a base design with 3 replications. The first factor was 4 levels of Cu(SO4) stress (0, 10, 20 and 30 mg/l), and the second factor was 4 levels of priming with salicylic acid and gibberellic acid 50 mg/l, hydro prime and control (non-priming). Results showed that with increasing levels of Cu(SO4) stress, germination characteristics (germination percentage, germination rate, normal seedling percentage, seedling length and seed vigor index) reduced and using of salicylic acid, gibberellic acid and hydro prime increased germination characteristics. The highest germination percentage (94%), germination rate (30.75 seed per day), normal seedling percentage (86.17%) seedling length (10.53 cm) and seed vigor index (9.08) were attained from priming by salicylic acid 50 ppm under non-stress conditions. Cu(SO4) stress increased proline (35%) and catalase (37%) activity but reduced protein (65%) and priming increased proline, protein and catalase activity as compared to unprimed under stress and control conditions. In this study, using priming treatment salicylic acid had usually higher germination characteristics and catalase activity, total proteins and proline content in comparison with untreated or control seeds.


Omid Ansari, Farshid Ghaderifar, Farzad Sharif Zadeh, Ali Moradi,
Volume 3, Issue 2 ((Autumn & Winter) 2017)
Abstract

The present study sought to evaluate the effect of different temperatures on germination and to determine cardinal temperatures (i.e., base, optimum and maximum) of Secale mountanum at temperatures of 3, 5, 10, 15, 20, 25, 30 and 35oC. Three nonlinear regression models (i.e., segmented, dent-like and beta) were used for quantifying the response of germination rate to temperature. The results showed that in addition to germination percentage, the temperature has a significant impact on germination rate. Given the root mean square of errors (RMSE) of germination time, the coefficient of determination (R2), the simple linear regression coefficients a and b, and the relationship between the observed and the predicted germination rates, the best models for determination of cardinal temperatures of Secale mountanum were dent-like and beta models. Base, optimum and maximum temperatures were estimated to be about 2.70 to 3.17, 21.27 to 30.00 and 35.00 to 35.05°C, respectively for the dent-like model. However, given the high value of SE for temperature base and a negative estimate of the base temperature of the beta model, one can report the dent-like model as the right model. Therefore, by using the dent-like model and the estimated parameters, it is possible to use this model for predicting germination.
 


Seyed Ali Tabatabaei, Omid Ansari,
Volume 5, Issue 2 ((Autumn & Winter) 2019)
Abstract



Extended abstract
Introduction: Heavy metal pollution is one of the most serious environmental problems. These metals which accumulate in food chain bring about a lot of hazards to both humans and animals. Among heavy metals, lead is considered to be the most dangerous heavy metal in the environment. It contaminates the environment through the lead-acid battery industry, paint and gasoline additives, insecticides, chemical fertilizers, car exhaust pipes and soldering. The objective of this study was to investigate the effect of Pb(NO3)2 on germination characteristics and biochemical changes of two wheat cultivars (Chamran and Kohdasht cultivars).
Materials and Methods: The objective of this research was to evaluate germination and biochemical changes of two wheat cultivars under Pb(NO3)2 stress, using three-parameter sigmoid model. The experimental design adopted was factorial with a completely randomized design, as the base design, with 3 replications. The first factor was 2 wheat cultivars (Kohdasht and Chamran), and the second factor was 6 levels of Pb(NO3)2 (0, 0.25, 0.5, 0.75, 1 and 1.5 mg.L).
Results: The results showed that with increases in levels of Pb(NO3)2 stress, germination percentage, germination rate, normal seedling percentage, seedling length, seedling weight and seed vigor index reduced for both wheat cultivars. The results of fitting three-parameter sigmoidal to characteristics indicated that the highest characteristics and X50 were obtained from the Chamran cultivar. The highest germination percentage (96%), germination rate (23 seeds per day), normal seedling percentage (93.33%), seedling length (13.07 cm), seedling weight (0.07) and seedling vigor index (12.18) were obtained from the Chamran cultivar under non-stress conditions. Pb(NO3)2 stress increased proline and catalase activity but reduced protein, proline and protein for the Chamran cultivar, as compared with the Kohdasht cultivar.
Conclusion: Generally speaking, the results showed that Pb(NO3)2 had a significant effect on germination characteristics and catalase, proline and protein of wheat. Finally, it could be said that in copper-accumulated areas, choosing proper cultivars can slightly mitigate the damages caused by copper. The Chamran cultivar seems to be a better candidate for these conditions.
 
Highlights:

  1. Evaluation of the effect of Pb(NO3)2 stress on germination characteristics of wheat.
  2. Using three-parameter sigmoid model for the evaluation of biochemical changes and germination of wheat under Pb(NO3)2 stress.

Sepideh Nikoumaram, Naeimeh Bayatian, Omid Ansari,
Volume 6, Issue 2 ((Autumn & Winter) 2020)
Abstract



Extended abstract
Introduction: Temperature is one of the primary environmental regulators of seed germination. Seed priming technique has been known as a challenge to improving germination and seedling emergence under different environmental stresses. Quantification of germination response to temperature and priming is possible, using non-liner regression models. Therefore, the objective of this study was to evaluate the effect of temperature and priming on germination and determination of cardinal temperatures (base, optimum and maximum) of Brassica napus L.
Material and Methods: Treatments included priming levels (non-priming, priming with water, gibberellin 50 and 100 mg/l) and temperature (5, 10, 15, 20, 30, 35 and 40 °C). Germination percentage and time to 50% maximum seed germination of Brassica napus L. were calculated for different temperatures and priming by fitting 3-parameter logistic functions to cumulative germination data. For the purpose of quantifying the response of germination rate to temperature, use was made of 3 nonlinear regression models (segmented, dent-like and beta). The root mean square of errors (RMSE), coefficient of determination (R2), CV and SE for the relationship between the observed and the predicted germination percentage were used to compare the models and select the superior model from among the methods employed.
Results: The results indicated that temperature and priming were effective in both germination percentage and germination rate. In addition, the results showed that germination percentage and rate increase with increasing temperature to the optimum level and using priming. As for the comparison of the 3 models, according to the root mean square of errors (RMSE) of germination time, the coefficient of determination (R2), CV and SE, the best model for the determination of cardinal temperatures of Brassica napus L. for non-primed seeds was the segmented model. For hydro-priming and hormone-priming with 50 mg/l GA, the best models were segmented and dent-like models and for hormone-priming with 100 mg/l GA,  the dent-like model was the best. The results showed that for non-priming, hydropriming with water, gibberellin 50 and 100 mg/l treatments, the segmented model estimated base temperature as 3.54, 2.57, 2.34 and 2.34 °C and dent-model estimated base temperature as 3.34, 2.45, 2.21 and 2.83 °C, respectively. The segmented model estimated optimum temperature as 24.62, 23.23, 23.69 and 24.38 °C. The dent-model estimated lower limit of optimum temperature and upper limit of optimum temperature as 20.01, 19.62, 16.25, 19.87 and 28.81, 27.38, 29.58 and 27.31 °C.
Conclusion: Utilizing non-liner models (segmented, dent-like and beta) for quantification of germination of Brassica napus L. response to different temperatures and priming produced desirable results. Therefore, utilizing the output of these models at different temperatures can be useful in the prediction of germination rate in different treatments.
 
 
Highlights:
1-The effect of priming on germination of Brassica napuswas investigated.
2-The temperature range of rapeseed germination of Brassica napus changes with the use of seed priming.

Omid Ansari, Esmaeil Shirghani, Khodadad Shabani,
Volume 10, Issue 1 ((Spring and Summer) 2023)
Abstract

Extended abstract
Introduction: Due to the high sensitivity of seeds to damage caused by diseases or environmental stresses, germination is considered an important stage in the plant life cycle: Germination, its uniformity and emergence decline during storage due to seed vigor deterioration. Moisture stress is one of the important environmental factors affecting germination, especially during improper storage. Seed priming with gibberellic acid improves seedling characteristics in different plants under different environmental conditions. Therefore, this research aims to investigate the effect of gibberellic acid and seed deterioration on germination indices and antioxidant enzymes of safflower seeds (Carthamus tinctorius L.) under water stress conditions.
Materials and Methods: In order to investigate the effect of gibberellic acid on germination indicators and changes in antioxidant enzymes of aged safflower seeds under osmotic stress conditions, a factorial experiment was conducted in the form of a completely randomized design with four replications. The first factor includes three osmotic stress levels: zero (control), -0.4, and -0.8 MPa, the second factor includes nine aging levels (zero, 1, 2, 3, 4, 5, 6, 7, and 8 days of aging). at a temperature of 41 degrees Celsius) and the third factor included seed priming treatment at three control levels (non-priming), zero (hydro-priming), and priming with 50 mg/l gibberellic acid. A 3-parametric sigmoid model was used to show the changes in germination indices at different levels of seed deterioration.
Results: The effect of osmotic stress, seed deterioration, and seed priming on the measured indices such as germination percentage, germination rate, seedling dry weight, normal seedling percentage, seedling length, seed germ, catalase, and ascorbate peroxidase, as well as seed protein were significant so that the measured indicators decreased with increasing seed deterioration and moisture stress. The results showed that the highest measured germination indices were obtained from seed treatment with 50 mg/l gibberellic acid under normal osmosis and non-deterioration conditions. Also, seed priming with gibberellic acid treatment caused an increase in catalase, ascorbate peroxidase, and protein activity compared to non-primed seeds under deterioration and non-deterioration conditions.
Conclusion: Results showed that the most suitable prime level used was gibberellic acid 50 mg/l, which had acceptable results under both stress conditions and normal conditions and deterioration and non-deterioration in comparison with other treatments. Therefore, the use of gibberellic acid hormone can help to improve germination indices as a result of changes in biochemical activities.

Highlights:

1. The effect of accelerated aging and priming on safflower seed germination under moisture stress conditions was investigated.
2.The effect of priming on catalase and peroxidase activity of aged safflower seeds was investigated.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.