Search published articles



Saeideh Maleki Farahani, Alireza Rezazadeh, Mahdi Aghighi Shahverdi,
Volume 2, Issue 1 (9-2015)
Abstract

In order to investigate the effect of an electromagnetic field and ultrasonic waves on the seed germination of Cuminum cyminum that two separate experiments using a completely randomized design with four replications was conducted at Seed Science and Technology Laboratory of Faculty Agricultural Sciences, the Shahed University of Tehran in 2012. In the first experiment, for the seeds of zero, 10 and 30 min exposure to electromagnetic field intensity was 88 microTesla. In the second test (ultrasonic waves), seeds for zero, 2, 4, 6, 8 and 10 min exposure ultrasonic waves’ intensity were 40 and 59 kHz. The interaction between the electromagnetic field and the length had a significant effect on the traits of length, fresh weight and dry weight of root and shoot, length and weight of root to shoot ratio, percent and rate germination and mean germination time. In most of the studied traits showed that electromagnetic field causes a significant decrease in the number of traits so that the control (zero M.T) had the highest value. The interaction of Ultrasonic waves at the time had a significant effect of on the most traits. Maximum germination percentage (100%) for the treatment of 40 kHz with duration of 4 and 6 minutes and mean germination time was highest in control (10.76 days) and 59 kHz treatment duration of 2 and 4 min (respectively 11.01 and 10.75 days). Generally, Cuminum cyminum seeds responded positively to the use of ultrasonic waves (In contrast field) and germination index was significantly increased in this case.


Maryam Janalizadeh, Ahmad Nezami, Hamidreza Khazaie, Hassan Feizi, Morteza Goldani,
Volume 3, Issue 1 (8-2016)
Abstract

Priming of seeds by magnetic fields (magneto priming) is proposed as an ecological, useful and low-priced method for improvement of seed germination and plant emergence. In order to evaluate the germination behavior of sesame seeds affected by magnetic fields, an experiment was conducted as a completely randomized design with 22 treatments (non-exposure to magnetic fields (control) and 21 magneto priming treatments) with three replications at the college of agriculture, the Ferdowsi University of Mashhad in 2014. the seed of sesame put into a plastic bag bulky and was treated with different intensity of magnetic fields (25, 50, 75 and 100 mT) for several times (10, 20, 30, 60 and 120 minutes). For assessment of germination traits of sesame under constant magnetic field conditions, magnetic tapes with three mT strength were used in each Petri dish throughout the experiment. Results showed that magnetic fields had no significant effects on final germination percentage and mean germination time and all magnetic treatments except for 75 mT at 60 minutes indicated reducing effects on germination percentage in comparison to control. Priming of seeds with magnetic fields in 50 mT strength for 20 minutes led to the increment of germination rate compared to control treatment but all levels of 100mT treatment caused a reduction in germination rate than control. The most radicle length, seedling length and seedling vigor length index belong to 75 mT at 60 minutes treatment and the most seedling dry weight and seedling vigor weight index related to 100 mT for 20 minutes treatment. Ranking of treatments showed that exposure of seeds for one hour in 75 mT and 10 minutes in 25 mT magnetic fields strength had the best outcomes.


Mohsen Azarnia, Abbas Biabani, Hamid Reza Eisvand, Ebrahim Gholamalipour Alamdari, Saeed Safikhani,
Volume 3, Issue 1 (8-2016)
Abstract

One of the important strategies for increasing germination speed and germination percentage, to produce high-quality seedling and plant optimal establishment is seed priming. In order to evaluate reactions of a lentil seed to priming duration and concentrations of the applied material as priming, a factorial experiment based on a completely randomized design with three replications was done in the agronomy laboratory of agriculture and Natural Resources College of Gonbad Kavous University in 2013. Factors included priming duration (4, 8 and 12 h) and various concentrations of the priming (hydro priming, hormonal priming by gibberellic acid and salicylic acid with the concentrations of 50, 100 and 150 ppm and non primed seeds). Results showed that the interaction effect of the concentrations and duration of the priming was significant on whole measured traits except the seed vigor index, germination percentage and seedling dry weight at 1% probability level. The lowest duration of germination (5, 10, 90 and 95%) obtained in the hydropriming treatment (2.72, 5.43 and 18.17 hour). The highest radicle fresh weight was observed in hydropriming treatment in three studied durations priming. In this study; the highest rate of germination obtained from GA50ppm during 12 hours. GA50ppm increased Germination percentage (98%). The greatest radicle length, shoot length and relative growth rate was obtained in the treatment of the gibberellic acid 100 ppm during 8 hours. All the average, gibberellic acid 100 ppm in 8h had an additive effect on the most of the measured traits of the lentil seed. Therefore, it can be introduced as the best mixture treatment.


Farhad Sadeghi,
Volume 3, Issue 2 (2-2017)
Abstract

In order to study the effect of zinc and magnesium on agronomic and seed germination traits of wheat (Sivand cultivar), the current study was carried out at Mahidasht Agricultural Research Station in Kermanshah over the years 2012 and 2013. The experiment was conducted as factorial based on completely randomized block design with three replications. The treatments consisted of four levels of zinc sulfate (zero, 20, 40 and 60 kg per hectare) and four levels of magnesium (zero, 70, 140 and 210 kg per hectare in the form of magnesium sulfate). The measured parameters included thousand seed weight, hectoliter weight, protein, zinc and magnesium seeds, germination test, growth rate, seed vigor, plant characteristics and grain yield. The results showed the effects of zinc and magnesium factors were significant for most traits at 1 and 5%. The effect of zinc sulfate showed that 60 kg zinc sulfate had the best effect on the traits under investigation. The effect of this treatment on two important traits (i.e., yield and grain protein percent) with 7.10 tons per hectare and 12.05% was higher (about 115 and 103%, respectively), as compared with the control treatment. Effect of magnesium sulfate levels on the traits showed that the treatment of 210 kg per hectare of magnesium sulfate was the superior treatment. The effects of the above-mentioned treatment on yield (7.84 tons per hectare) and grain protein (11.89 percent) were higher than the control treatment, which was 124 and 101.5%, respectively. Given the number of field nutrients and the wheat needs for these elements, the treatments of 20 kg per ha of zinc sulfate and 140 kg per ha of magnesium sulfate were better than other treatments and economically speaking, are very cost-effective and are thus recommended.
 


Mahmod Reza Tadayon, Mohammad Rahimi,
Volume 3, Issue 2 (2-2017)
Abstract

The purpose of this study was to evaluate the effect of Nano TiO2 and Nano CNT on some germination indices and growth parameters of some hulled barley cultivars. The experiment was conducted in a laboratory at Shahrekord University during 2014. The study was a factorial, adopting a completely randomized design with four replications. Treatments consisted of titanium dioxide nanoparticles and carbon nanotube (CNT) in four concentrations (0, 10, 30 and 60 mg.l-1) which were applied to seeds of hulled barley cultivars such as Bahman, Makoii and Nosrat. The traits measured were the dry weight of seedling and seedling length, germination percentage, germination rate, mean germination time, the percentage of resistance of radical, seedling vigor length and weight index. The results showed that carbon nanotubes treatments with 60 mg.l-1 had a significant impact on germination percentage, germination rate, seedling vigor length and weight index and seedling dry weight, as compared with other treatments. In this experiment, the highest percentages of resistance of radicle, seedling vigor weight index and seedling dry weight of Nosrat Cultivar were obtained under 60 mg.l-1 carbon nanotube treatment, which was 70, 122.2 and 64.9%, respectively, as compared with control treatment. In addition, 60 mg.l-1 carbon nanotube treatment increased the seedling vigor of Makoii cultivar by 39.8%, as compared with the control treatment. The findings were that in terms of seedling vigor length and weight index, seedling length, seedling dry weight and the percentage of resistance of radical, the Nosrat Cultivar showed better morphological characteristics than Bahman and Makoii cultivars, under laboratory conditions.
 


Mehri Khesht Zar, Mehran Sharafi Zad, Jafar Ghasemi Ranjbar,
Volume 4, Issue 1 (9-2017)
Abstract

To investigate the role of seed size on maize germination characteristics, an experiment was conducted in 2014 in the Laboratory of Registration and Certification of Seeds and Plants, Khuzestan Branch. Treatments included three levels of seed size (control (mixed), large and small) and hybrids at three levels (KSC704, Karun and Mobin). The results of these experiments showed that the hybrid had a significant impact on germination percentage, the rate of germination, vigor index, root and shoot length and dry weight of seedling. In addition, the highest germination (94.3%), the rate of germination (8.4 seeds per day), vigor index (37.6), shoot length (21 cm), root fresh weight (3.1 gr) and dry weight of seedlings (0.59 g) affected by seed size belonged to the Karun hybrid. Generally speaking, in terms of germination and seedling growth, there were differences among the three groups of maize seeds. Out of the hybrids scrutinized, Karun hybrid was a better one in terms of germination and growth of seedlings.

Highlights:
  1.  Due to higher storage capacity, the use of large seeds brings about increases in the seedling germination rate and their establishment in the field
  2. The use of large seeds with more seed vigor decreases competition between seedlings and reduces vapor from the field.

Asad Masoumi Asl, Zohreh Chahabkar, Sakineh Khalili, Reza Amiri-Fahliani,
Volume 4, Issue 1 (9-2017)
Abstract

Salinity is one of the environmental stresses limiting rice cultivation. Evaluation of the tolerance and sensitivity of offsprings of segregated generations under salinity condition is one way of finding tolerant cultivars. In order to study the effects of salinity (80 mM NaCl) stress on the second generation offspring of crosses of three rice varieties (Dollars and Gharib with 304) and to compare them with their parents and their classification in terms of salinity stress, the first experiment was conducted, adopting a Completely Randomized Design with four replications (i.e., crossing parents with Yasouj and Kamfirooz varieties). In the second experiment, check cultivars and the second generation progeny were evaluated, using an augment with a completely randomized design. At the germination stage, the Dollar cultivar was sensitive to salinity stress because it had the lowest ratio of all traits except germination percentage. However, Gharib and Kamfirooz Cultivars were salt tolerant. In both crosses, second-generation offsprings showed genetic variations in terms of the traits measured. Broad-sense heritability values for Dollars×304 and Gharib×304 crosses for shoot height (5.98% and 96%), root length (8.90% and 86%) and shoot fresh weight (8.95% and 7.92%), were relatively high, indicating that we can select these traits based on their phenotypes. General irritability for the shoot and root length traits in the second generation offsprings of Dollar and 304 crosses was higher than that of the second generation progeny of 304 and Gharib crosses. Based on these results, we concluded that for the purpose of improving salt tolerance at germination stage, 304 and Dollars crosses are more useful in rice breeding programs.

Highlights:
  1. For the first time, an augment design was adopted in an experimental study to investigate the non-repeat genotypes in the generations.
  2. The tolerance and sensitivity of genotypes were evaluated, consistent with the definition of statistical intervals.
  3. The results of this research led to the introduction of superior crossings for replications at the farm level.

Nafise Taghizadeh, Gholamali Ranjbar, Ghorbanali Nematzadeh, Mohammadreza Ramzanimoghdam,
Volume 4, Issue 2 (3-2018)
Abstract

Salinity is one of the most important factors limiting agricultural production. Cotton, as an oil-fiber plant, is one of the most important industrial plants and is sensitive to salinity, especially at germination and seedling stages. Therefore, in this study, 14 allotetraploid varieties of commercial and local cotton were selected. The study was carried out as factorial with a completely randomized design and three three replications, using the sandwich method. Germination tests were performed at three salinity levels of 0, 8 and 16 ds.m-1. Afterwards, root and shoot length, fresh and dry weight of root and shoot, germination percentage, allometric coefficient, seedling water percentage and seed vigor index were measured and stress tolerance indices were calculated based on yield (seedling dry weight) in stress and non-stress conditions. Given these indices, all cultivars were aalyzed at two levels of 8 and 16ds.m-1, using principal component analysis and biplot diagrams were drawn. Finally, the dendrogram classification of genotypes was plotted based on STI indices (stress tolerance index), SSI (stress susceptibility index), and the performance (dry weight plantlet) in stress and non-stress conditions. The result of variance analysis for genotype, salinity and salinity×genotype demonstrated that dry weight root, dry weight shoot, fresh weight root, stem length, vigor index seedling, allometric coefficient, dry weight seedling, and length seedling were significant in p-value 0.01, and fresh weight shoot, length root were significant in p-value 0.05. Clustering and the biplot of the genotypes based on STI and SSI indices at salinity levels of 8 and 16 ds.m-1 indicated that the Sepid and Giza genotypes were tolerant and that the Kashmar genotype was sensitive to salt levels at germination stage.
  
Highlights:
  1. The reaction of the cotton cultivars studied was different to levels of salinity stress.
  2. An increase in salt stress caused a significant reduction in the germination characteristics of cultivars of cotton studied.
  3. Bi-plot analysis and clustering based on STI and SSI indices turned out to be a suitable method for clustering cotton cultivars.

Masume Hematifar, Ali Tehranifar, Hasan Akbari Bishe, Bahram Abedi,
Volume 4, Issue 2 (3-2018)
Abstract

Given the medicinal and ornamental properties of Hawthorn (Crataegus spp.), and given that there are some problems in its propagation, which is due to the hard cover of the seeds and immature embryo, working out techniques that can facilitate the process of seeds’ germination is of great import. Thus, the present study sought to identify the best method for the purpose of breaking the seed dormancy of 8 species of native hawthorn of Iran. The study was carried out as factorial with a completely randomized design and had three replications. The first, second and third factors were, respectively species of Hawthorn in eight levels, sulfuric acid in three levels (half and an hour versus non-treated (control) and chilling treatment in three levels (90, 105 and 120 days, respectively). The results showed that the highest percentage of germination (32%) and germination rate (9.1 day-1) were obtained under the interaction of sulfuric acid treatment for one hour, followed by a 120-day chilling period in C.turkestanica, which had a significant difference with other treatments. It is concluded that hawthorn seeds have deep endocarp and physiological dormancy. The interaction of Sulfuric acid treatment and moist chilling play an important role in increasing the percentage and speed of germination of Hawthorn seeds.

Highlights:

  1.  Achieving the best way to break the dormancy of Hawthorn seeds in different species and genotypes.
  2. Shortening the seeds’ germination time.

Hakimeh Darvizheh, Mortez Zahedi, Bohlul Abbaszadeh, Jamshid Razmjoo,
Volume 5, Issue 1 (9-2018)
Abstract



Extended abstract
Introduction: Echinacea purpurea, a member of Asteraceae family, is a herbal medicine which is effective for promoting human immune system. Enviromental stresses including water defecit, which limit maternal plant growth, can also affect their seed quality and germination. Various compounds such as salicylic acid and spermin are known to be useful in the alleviation of harmful effects of drought on plants and their seed production.
Materials and Methods: In order to investigate the seed vigor of Purple Coneflower after foliar  application of salicylic acid (SA) and spermine (SPM) on maternal plant (no spray,75 mg/l SA, 150 mg/L SA, 75 mg/L SPM, 75 mg/l SA+75 mg/L SPM and 150 mg/L SA+75 mg/L SPM) under three irrigation regimes (irrigation after 20, 40 and 60% depletion of soil available water), a split plot experiment was conducted based on a completely randomized block design with three replications during 2016- 2017 growing seasons at research field of Institute of Forests and Rangelands, Iran.
Results: Water stress decreased the percentage and rate of germination, shoot and seedling length, shoot dry weight, germination energy and seed germination vigour. The results showed that foliar application had a significant effect on shoot, root and seedling length, shoot, root and seedling dry weight, germination rate, allometric factor, and germination vigour. The interaction effect of drought stress and foliar application indicated that non-stress and 150 SA+70 SPM mg/L had the highest radicle length (28.8 mm), radicle dry weight (1.81mg), seedling dry weight (6.20 mg) and Allometric factor (0.412).
Conclusions: Based on the results of the current experiment, the foliar application of salicylic acid and spermine improved the seed germination of coneflower plants under both normal and water stress conditions and the highest values of these parameters were obtained under combained application of high concentrations of salicylic acid (150 mg/L) and spermine (75 mg/L).
 
 
Highlights:
1- Investigating the foliar application of salicylic acid and spermine in maternal Echinacea purpurea plant under drought stress in germination of seed.
2- The foliar application of salicylic acid and spermine on maternal plants of Echinacea improved germination quality under water stress.
Samaneh Hosseini, Mohammad Rafieolhossaini, Parto Roshandel,
Volume 5, Issue 1 (9-2018)
Abstract

Extended abstract
Introduction: Niger with the scientific name of Guizotia abyssinica (L.F.) Cass. belongs to the Asteraceae family. Niger seed contains 50-75 percentage of oil which is used in the treatment of rheumatism and burns, and as a substitute for olive oil. Its meal is also used for animal feeding. Environmental crises sustained by living systems are considered as stress. Drought stress is one of the non-biological stresses. Yield reduction due to this type of stress is reported to be higher than that related to other stresses. Since plant development starts from germination and for survival, the seeds should germinate to adapt themselves to the environmental conditions and establish themselves in the soil, the success of passing the germination stage will play an important role in other stages of plant establishment. Different studies have shown the positive effect of magnetic field on increasing germination characteristics. In this regard, applying a magnetic field before planting is a safe and inexpensive method for increasing germination and seedling growth. Seed priming is useful for a faster and more powerful response to drought stress and among different types of priming, physical priming is of particular importance for ecological reasons and for not having a negative impact on the environment.
Materials and Methods: In order to study the effect of seed physical pre-treatment and drought stress on seed germination characteristics of Niger, an experiment was conducted as factorial in a completely randomized design with three replications at the Research Laboratory of Seed Science and Technology at Shahrekord University. Different magnetic field intensities at five levels including (0, 50, 100, 150 and 200 mT (at 5 minutes period)) as the first factor and drought stress at five levels (0, -4, -5, -6 and -7 bar Polyethylene Glycol6000) as the second factor were considered.
Results: The results of variance analysis showed that the effect of drought stress, magnetic field intensity and their interaction were significant on all of the evaluated characteristics. The maximum germination percentage and rate and the minimum of T10 and T50 were observed in 50 mT field intensity under normal conditions. The minimum germination index under normal conditions and the maximum length and shoot dry weight under non-treatment conditions and the maximum root and shoot fresh weight in 200 mT field intensity under normal conditions were obtained. The maximum root length and dry weight were observed in 50 and 100 mT field intensity under normal conditions, respectively. 
Conclusions: Seeds which cross through a magnetic field, become swollen and probably as a result, the activity of auxin hormone in these seeds increases. In addition, the respiration level also increases in them and they have higher levels of energy and activity, which results in faster and more uniform germination and the creation of stress-resistant plants. In this study, although by increasing drought stress intensity, negative effects were observed on germination characteristics, the magnetic field under these conditions improved some germination characteristics. In general, for the purpose of improving germination and alleviating drought stress conditions, for 0, -5 and -7 bar potentials, the field intensity of 50 mT and for -4 and -6 bar potentials, the field intensity of 150 mT are recommended.
 
Highlights:
  1. The effect of magnetic field on germination of multipurpose seed of Niger plant.
  2. The effect of drought stress on germination of multipurpose seed of Niger plant, given Iran’s being located in dry belt.
  3. The positive effect of magnetic field on germination of Niger seed to improve the negative effects of drought stress.

Vaghef Enayati, Ezatollah Esfandiari, Alireza Pourmohammad, Kamal Haj Mohammadnia Ghalibaf,
Volume 5, Issue 2 (3-2019)
Abstract



Extended Abstract
Introduction: Weeds, as the most important biological stress, reduce the efficiency of water use, waste of food, shading and secretion of toxic substances, leads to a 10 to 100 percent reduction in crop yields. The first step of the weed control understands the biology and life cycle of the weed particularly seed Eco physiological characteristics. Dormancy in weed seeds, including Redroot Pigweed seeds, is common. So, due to the importance of dormancy breaking and germination studies of weed seeds, the present study was designed to identify the methods for dormancy breaking and the germination of Redroot Pigweed seeds.
Materials and Methods: This research started in autumn 2013 by collecting Redroot Pigweed seeds from fields of Alajujeh village, Khoda Afrin County, East Azerbaijan Province, and then it was carried out at the Laboratory of the Faculty of Agriculture of the University of Maragheh in 2014 and 2015. For data analysis, the GenStat 12.1 program was used and the Duncan test was used at 5% probability level to compare the averages. Excel 2013 was also employed for drawing the diagrams.
Results and discussion: Analysis of variance demonstrated that the effect of treatments on germination percentage and germination rate in Redroot Pigweed seeds at 1% probability level and the mean germination time at 5% probability level was significant. The results showed that among studied treatments, seeds holding for 18 months were most efficient seeds dormancy breaking at Redroot Pigweed. So that the highest germination percentage (92%), germination rate (29.18 seed/day) and lowest the mean germination (4.2 day) time were obtained in seeds holding treatment. Pre-chilling treatment also had significant effects in stimulating germination. As regards treatments of seed holding in low temperature and Pre-chilling accelerate the germination process and increase germination percentage, so, having precise information of these traits enables to study, a better management and control of this troublesome weed.
Conclusions: In general, the results of this study show that among the treatments, holding seeds for 18 months at 6 ° C is the best method for solving Redroot Pigweed seeds weeds.

 
Highlights:
1- Seed holding in low temperature and Pre-chilling accelerates the germination process.
2- Seed holding in low temperature increases germination percentage.


Yaser Alizadeh, Ehsan Zeidali, Hamid Hassaneian Khoshro,
Volume 5, Issue 2 (3-2019)
Abstract



Extended abstract
Introduction: Crop rotations are practiced to eliminate the effect of monoculture, but the succeeding crop may be influenced by the phytotoxins released by the preceding crop. Among plants, Brassica species contain allelochemical compounds as glucosinolate that is, under special conditions, released to environment and affects seed germination and plant growth. Wild mustard (Sinapis arvensis L.) as a weed of 30 crops in 52 countries which has a series of allelopathic effects that prevent germination of other plants. Products of glucosinolate- like ionic thiocyanate (SCN-) inhibited the root or shoot growth of many crop species. Also volatile compounds like isoprenoid and benzenoid released from Brassica tissue degradation may suppress many crops growth. It was also found in many studies that allelochemicals, which inhibited the growth of some species at certain concentrations, might stimulate the growth of same or different species at lower concentrations. The present research was conducted to evaluate the effects of aqueous extract concentration of various mustard parts on barley seed germination and seedling growth.
Materials and Methods: In order to evaluate the allelopathic effect of mustard in agro ecosystems, a factorial experiment based on completely randomized design with three replications was carried out in botany laboratory of agriculture faculty, Illam University in 2014. Experimental treatments included five concentrations of mustards foliage and root aqueous extract (0, 10, 30, 50, and 70 percent) that were studied at germination and early growth stage of barley (cv. Abidar) in two separate experiments. In the seed germination section, the effects of aqueous extract of mustard on germination rate and germination percentage of barley seed were measured. In the study of the effect of aqueous extract of mustard on barley seedlings, weight and length of root and shoot, leaf chlorophyll content, proline and soluble sugars content were measured.
Results: Results showed that the highest amount of barley seed germination percentage and germination rate (100 and 19.5, respectively) were observed in control and the lowest amount (40 and 9.5, respectively) belonged to mustard root aqueous treatment with 70 percent concentration. The most decrease in barley seedlings length and weight were observed at the highest concentration of aqueous extract. The amount of chlorophyll a decreased from 2.39 in control to 1.66 mg per fresh weight in 70 percent concentration of aqueous extract treatment. The highest amount of proline (66.8 μM per fresh weight) in barley foliage was observed in 70 percent aqueous extract treatment. The results from this study showed that mustard allelopathic effect may be a possible mechanism controlling the barley germination and early growth stage in agro ecosystems.
Conclusion: Generally, we were able to demonstrate short term auto toxicity and possible short-term allelopathy due to mustard has harmful effects on barley including reduced seed germination and emergence of barley seedling. Depending on the concentrations of Mustard extract, allelopathic activity will vary Mustard. Further investigations are also needed to determine the influence of cultivar variations, and to identify the active compounds involved in mustard auto toxicity and Allelopathy.
  
Highlights:
1-Mustards aqueous extract reduced seed germination percentage and plant growth in barley.
2-Mustards aqueous extract increased proline and soluble sugars in barley, but it reduced amount of chlorophyll in this plant.


Moazzameh Eskandarinasab, Mohammad Rafieiolhossaini, Parto Roshandel, Mahmoud Reza Tadayon,
Volume 5, Issue 2 (3-2019)
Abstract



Extended abstract
Introduction: The use of nanotechnology as a diverse and applied discipline is ongoing in almost all areas of science. Fertilizers and nano-nutrients have the effective properties which help the production of plants depending on their needs to regulate the plant growth. Plants under stress conditions are willing to produce natural nanoparticles to continue their growth. Nano TiO2 has a high photocatalytic effect and as a catalyst, it is mainly used in water, electronic devices, conversion and storage equipment of Energy as suspension. Sources of SiO2 are very diverse, including natural nanoparticles, anthropogenic particles and engineering nanoparticles. Although, silicon in many crops is not an essential element for growth, it has beneficial effects on plants growth and development. Today, carbon nanotubes are one of the most important materials in industrial programs. These materials, with different methods and specific properties, can play an important role in the production of composite materials, application in medicine, electronic and energy storage. The Niger plant, with the scientific name of Goizotia abyssinica (L.F) Cass, belongs to the Asteraceae family. Its seed, are used in pharmacy, food industry, green manure and for feeding birds and cows. Therefore, the purpose of this experiment was to investigate the effect of type and concentration of three nanoparticles on some of germination characteristics and anthocyanins content in Niger medicinal-oily plant.
 Materials and Methods: In order to evaluate the effect of three nanoparticles on seed germination of Niger, an experiment was conducted as factorial in a completely randomized design with four replications. The treatments of TiO2, SiO2, and CNT were as the first factor while their concentrations in four levels (zero, 10, 30 and 60 mg/l) were as the second factor. In this study the traits of germination percentage, germination rate and mean of daily germination, germination and vigour index, length, fresh and dry weight of radicle and plumule, anthocyanin content and radicle resistance percentage were measured. 
 Results: The germination percentage, germination rate and mean of daily germination decreased by increasing of nanoparticles concentration. The favorable effect of TiO2 on germination index at the concentration of 30 mg/l and radicle dry weight at the concentration of 10 mg/l, was gained compared to control. The positive effect SiO2 on germination index and radicle dry weight at the concentrations of 10 and 60 mg/l, the anthocyanin content and the fresh and dry weight of plumule at the concentration of 60 mg/l was obtained compared to control. Also, the appropriate effect of CNT on germination index at the concentration of 10 and 30 mg/l, the anthocyanin content and radicle dry weight at the concentration of 60 mg/l and plumule fresh weight at the concentration of 30 mg/l, was observed.
Conclusions: According to the results of this study, it seems that the effect of nanoparticles in plants, in addition to the plant, species, type and concentration of nanoparticles, varies depending on the growth stage and physiology of the plant. It seems that nanoparticles at some concentrations can increase the water absorption of seeds and increase seedling growth with their positive effects. Anthocyanins are produced by exposure to stress due to their antioxidant activity. In general, it can be stated that increasing the concentration of nanoparticles caused and increased the oxidative stress in plant. Therefore, it is recommended by investigating the bad effects of nanoparticles on plants, if necessary, use nanoparticles at low concentrations (less than 60 mg/l) to increase the plant's efficiency.
 
Highlights:
  1. The effect of nanoparticles kind and concentration on seed germination indices and anthocyanin content of Niger seedling.
  2. Investigating the interaction of nanoparticle type and concentration as the physical priming factor of seeds on seed germination of multi-purpose Niger plant.

Farnaz Porali, Farshid Ghaderi-Far, Elias Soltani, Mohammad Hadi Palevani,
Volume 5, Issue 2 (3-2019)
Abstract



Extended abstract
Introduction: Germination speed is one of the most important germination indices, used in most studies to compare the effects of different treatments on seed germination. Researchers use the reverse time up to 50% maximum germination (1/D50) to calculate the germination rate. One of the methods used for calculating the D50 is the utilization of nonlinear regression models such as Logestic, Gompertz, Richard, Weibull and Hill. In addition, for the purpose of calculating this parameter, simple empirical models such as the model presented by Farooq et al. and Ellis and Roberts are used. The question which arises is which of these methods has more precision predicting D50. The purpose of this study was to calculate D50, using different methods in seed germination of cotton.
Material and Methods: In this experiment, cottonseeds were placed at three temperatures of 15, 25 and 40°C with three replications, and germinated seeds were counted daily several times. To calculate D50, several nonlinear regression models including Gompertze, Logestic, Hill (the four-parameter), Richard and Weibull models were used. Moreover, for the purpose of calculating D50, the models presented by Farooq et al. and Ellis and Roberts were used.
Results: The results showed that all nonlinear regression models exhibited suitable fit to germination data. However, logestic, Hill and Weibull showed better predictability of D50, compared with other models. Besides, D50 calculated by the Farooq model was similar to that estimated by nonlinear regression models, whereas D50 estimated by the Ellis and Roberts model was higher than that estimated by other models.
Conclusions: The results of this study showed that both non-linear regression models and the model developed by Farooq could be used to calculate D50 of cottonseed. In general, the results of this study showed that nonlinear regression models could be used to calculate D50. In this research, Logestic, Hill, and Weibull showed good fit for cumulative seed germination data of cotton seeds versus time at different temperatures. These models have coefficients that have a biological concept that includes maximum germination percentage, time to 50% maximum germination and time to start germination. Moreover, when researchers only seek to measure D50 and are not familiar with the statistical software, they can use the empirical formula presented in this research.
 
Highlights:
  1. Calculating D50 in cottonseeds, using different methods.
  2. Using nonlinear regression models to calculate D50 in cottonseeds.
  3. Developing a proper method which is more accurate, and better lends itself to calculating D50 of cottonseeds.

Elahe Hoseinpur Askarian, . Ali Abbasi Surki, Abdolrazagh Danesh Shahraki,
Volume 6, Issue 1 (9-2019)
Abstract



Extended Abstract
Introduction: In addition to dormancy, seeds of Allium hirtifolium have a weak emergence in the field. Among methods for improving the efficiency and emergence of seeds, nutritional priming can be considered for its performance on weak seeds. The presence of micronutrients is one of the factors that may affect the efficiency of the seeds. Therefore, the aim of this study was to investigate the effect of priming with nutrients on optimization of dormancy status, germination, and enhancement of shallot seeds for its conservational, restoration and domestication programs.
Materials and Methods: In order to study effects of nutrients on germination and emergence of Allium hirtifolium, a CRD factorial experiment was conducted with four replications at Seed Science and Technology Lab of Shahrekord University in 2015. Two dormancy breaking treatments (sulfuric acid and sulfuric acid + gibberellic acid) as the first factor and nine nutrition treatments including four levels of ZnSO4 (5, 10, 50 and 100 mM) and four levels of FeSO4 (0.5, 1, 1.5 and 2%) versus control were compared on shallot seeds.
Results: The results showed that dormancy breaking treatments, nutrient pretreatment of seeds and their interaction had significant effects on germination percentage, germination rate, time to reach l0% and 50% germination, germination uniformity, seedling length and vigor index I at 1% probability level. Sulfuric acid and FeSO41% increased germination versus control. Application of gibberellic acid affected the behavior of iron but did not indicate significant effects for zinc. The concentration of 5 mM ZnSO4 increased the rate of germination, compared with the control but decreased with higher concentrations. The gibberellic acid did not show any sharp effects on germination rate. Time to reach 50% germination was also affected by FeSO4 0.5% and 1% and lower levels of zinc. Application of gibberellic acid did not show any significant impact on the germination time reduction, compared with control and increased T50 in higher concentrations. Although germination traits were rarely affected by gibberellic acid, seedling length and vigor index were positively influenced with GA, and the highest seedling length was achieved at 0.5 and 1% of iron and gibberellic acid.
Conclusion: Seed priming with nutrients can improve germination and plant vigur indices. Different concentrations of iron and zinc showed different impacts on the seeds, which showed interaction with dormancy breaking methods. Although application of gibberellic acid did not have an effective role in increasing germination rate and reducing the time to reach 10% and 50% of germination, it enhanced seedling length and vigor index I, especially for iron.
 
 
Highlights:
  1. Addition of iron and zinc sulfate to shallot seeds whose dormancy was broken with sulfuric acid caused higher germination rate of  25.54%, compared with the control.
  2. Gibberellin compensated for zinc effect in germination and was able to replace it, but had a slight synergic effect with iron sulfate.
  3. Although gibberellin application did not affect germination traits, the seedling length and vigor index showed a positive response to it.

Vahid Sayedena, Babak Pilehvar, Kambiz Abrari-Vajari, Mehrdad Zarafshar, Hamid Reza Eisvand,
Volume 6, Issue 1 (9-2019)
Abstract



Extended Abstract
Introduction: Production of nanoparticles and their use are on the rise in different areas of plant science. However, in spite of their increasing production, there is limited information about their effects on plant biology. In the current study, the potential of TiO2 nanoparticles was investigated for the purpose of improving seed germination of Sorbus luristanica and then subsequent effects of nanoparticles on the growth and biomass of the plants were determined.
Materials and Methods: Seeds of S. luristanica were collected from its natural stands. The seeds were primed with different concentrations of 0, 75, 150, 250, 350 and 500 TiO2 nanoparticles miligeram per liter for 24 h. The treated seeds were placed in wet sand at room temperature for 2 weeks and then in cold for 3 months. The expriment was set as a completely randimized design with 4 replications. Aftre 3 months of stratification in moistened sand, the stratified seeds were put in the germinator and with the appearance of seed germination signs, germination data were recorded daily during 22 days. At the end of the seed germination experiment, some germination parameters such as seed germination percentage, seed vigority and mean time to germination were calculated. Moreover, some growth and biomass parameters including leaf number, plant height and dry and fresh biomass of leaf, stem as well as roots were measured. In addition, scaning electron microscopic (SEM) was used for observation of presence and adhesiveness of TiO2 nanoparticles on the seed coat.
Results: Based on the results, all the germination parametres including seed germination percentage, seed vigoroty and mean germination time were improved by the TiO2 nanoparticles treatments. In addition, 500 mg.L-1 treatment considerably improved seed germination characteristics. The peresence of TiO2 nanoparticles on the treated seeds and lack of the nanomatreials on the conrtol seeds were obsereved by scaning electron microscopic pictures. The One-way ANOVA showed that 75 mg.L-1 treatment was more succesful for improving the grwoth (such as shoot length) and biomass production (fresh and dry biomass of leaf, stem and root and total biomass as well).  
Conclusion: It can be concluded that priming of the seeds of this species with different concentrations of TiO2 nanoparticles leads to improvement of seed germination and growth and biomass parameters. However, the patterns of effects were different in each phase. Therefore, the objectives should be formulated first and then the best concentration should be chosen. It seems that with appropriate concentrations, nanoparticles can be useful for breaking seed dormancy and production of the species. Given the promising resutls of 150 mg.L-1 treatment, it can represent a successful treatment for breaking seed dormancy and seedling production of S. luristanica.
 
 
Highlights:
1- Study of seed germination of Sorbus luristanica for the first time
2- Using Nano-materials and their potentials in breaking seed dormancy and improving the species germination
3- Using SEM in order to study presence and adhesiveness of nanoparticles on the seed coat
Saman Sheidaei, Aidin Hamidi, Hossein Sadeghi, Bita Oskouei, Leila Zare,
Volume 6, Issue 1 (9-2019)
Abstract



Extended Abstract
Introduction: Understanding the complex characteristics that control the life span of the seed has ecological, agricultural and economic importance. Inappropriate storage conditions after harvesting destroy a large part of annual yield partly due to microbial activity in the storage. Damage from storage fungi varies based on the climatic conditions, crops and storage facilities. This study was carried out to investigate the effect of storage conditions and initial seed moisture content on the growth of storage fungi and also the relationship between the degree of contamination with fungi and the quality and biochemical changes of the seeds.
Materials and Methods: The present study was carried out as a factorial experiment based on a completely randomized design to assess the impact of storage fungi on soybean seed deterioration at different storage conditions. The treatment included three degrees of initial seed moisture content including low moisture content (10%), medium moisture content (12%) and high moisture content (14%) as the first factor. Moreover, two storage conditions including the seed storage in Moghan and controlled seed storage in Seed and Plant Certification and Registration Institute were considered as the second factor. Soybean seeds of Williams's cultivar were investigated for the infection of Aspergillus flavus, Aspergillus niger, Fusarium and Penicillium fungi and also related biochemical traits and seed quality such as germination percent, seedling vigor index, soluble sugar and total protein.
Results: The results of this experiment showed that the increase of the seed moisture content by 14% can significantly decrease the seed quality. Therefore, the seed moisture content of 14% was identified as unsuitable moisture for the storage of soybean seeds. In addition, the infection with storage fungi has a direct relationship with the degree of seed moisture and seeds with high moisture content are rapidly attacked by the storage fungi which can decrease seed quality and viability. Moreover, the Aspergillus niger infection increased from 27.5 to 43.75 and the germination percent decreased from 52.5 to 23 percent in seeds with a moisture content of 14% in Moghan storage, as compared with the controlled storage. Furthermore, this study showed that when the percentage of storage fungi increases, the soybean seed deterioration increases. Studying the biochemical changes of deteriorated seeds during the storage showed that as the aging of the seeds increases, soluble sugars and protein percentage decrease. The amounts of soluble sugars and total protein of the seed were significantly lower in seeds maintained under unsuitable conditions. Furthermore, the content of soluble sugars and total protein decreased significantly by the increase of the seed moisture, which resulted in the increase in seed deterioration.
Conclusions: Based on the obtained results, initial seed moisture and storage conditions are two important determinants of fungi infestation during storage, which can affect the content of soluble sugars and total protein causing seed deterioration, seed vigor and viability. It can be concluded that the soybean seed moisture content of 12%, which is the standard moisture content of soybean seed production in Iran, is regarded as suitable moisture for seed storage.
 
 
Highlights:
  1. Introduction of proper storage conditions and initial seed moisture in order to decrease fungal damage and soybean seed deterioration.
  2. Determination of different fungal damages during the storage of soybean seeds.
  3. Determination of relationship between the degree of soybean seed infection of storage fungi and the seed’s quality, its amount of protein and soluble sugars.

Marzie Soltani Alikooyi, Ali Abbasi Surki, Mohsen Mobini Dehkordi, Shahram Kiyani,
Volume 6, Issue 2 (3-2020)
Abstract



Extended Abstract
Introduction: Salinity is one of the most serious abiotic stresses, causing instability in germination and seed emergence due to low osmotic potential and ionic toxicity. Development of simple and low-cost biologic methods is essential for short-term management of salt stress. The use of plant growth-promoting rhizobacteria increases the rate and uniformity of germination. This research aimed to investigate the effect of bacterial growth-promoting bacteria on the germination and seedling growth indices of alfalfa c.v. Hamedani in different salinity levels.
Materials and Methods: A CRD factorial experiment with four replications was conducted in Seed Science and Technology Laboratory of Shahrekord University in 2016. The first factor consisted of 6 salinity levels 0, 2.5, 5, 7.5, 10 and 12.5 dS/m created with sodium chloride, and the second was four levels of bacterial pre-treatment: no inoculation with bacteria and biopriming, inoculation of alfalfa seeds with Acinetrobacter calcoaceticus PTCC 1318, Bacillus megaterium PTCC 1250 and Enterobacter aerogenes PTCC 1221. The seeds were treated with bacteria and placed at a 20 °C growth chamber. They were then irrigated with desired solutions depending on the salinity treatment. Germinated seeds were counted daily and the parameters of germination percentage and rate, seedling length, seedling dry weight, vigour index I, II and allometric coefficient were calculated after 10 days.
Results: Salinity levels higher than 10 dS/m reduced germination indices and seedling growth of alfalfa. The highest reductions were obtained for 12.5 ds/m salinity level versus control for germination percentage (10.81%), germination rate (49.48%), plumule and radicle length (13.30% and 28.88% respectively) and vigor index I and II, which were 30.27% and 6.28%, respectively. The seed treated with A. calcoaceticus was able to tolerate salinity stresses more than others. For example, the reduction for the seed treated with A. calcoaceticus was only 4%, compared with non-stressed control. In salinity conditions 2.5 and 5 dS/m, the highest rate of germination was obtained, using A. calcoaceticus bacteria. In addition, the seeds treated with E. aerogenes showed higher stability at different levels of salinity for seedling length traits. The highest vigour index related to the use of A. calcoaceticus in salinity was 7.5 ds/m.
Conclusions: A. calcoaceticus had a significant role in reducing the negative effects of salinity on germination percentage and rate, vigour index I and II and allometric coefficient while E. aerogenes bacteria were more effective in reducing negative effects of salinity on seedling length and dry weight.
 
 
Highlights:

  1. Acinetrobacter calcoaceticus bacterium increased the percentage and rate of germination of alfalfa seeds under salt stress.
  2. Enterobacter aerogenes bacteria efficiently adjusted the negative effects of salinity on alfalfa seedlings length and dry weight.

Mohammad Ghayour, Majid Taherian, Sadegh Baghban, Saeed Khavari,
Volume 6, Issue 2 (3-2020)
Abstract



Extended Abstract
Introduction: The effect of environmental factors on the developmental stages of a plant causes the planting date to vary from one region to another. Temperature is a very important factor in the maximum percentage germination and germination rate. Priming improves germination rate, brings about the uniformity of germination and reduces seed susceptibility to environmental factors. The purposes of this experiment were to study the effects of priming treatments at different temperatures on the germination characteristics of Hibiscus sabdariffa under laboratory conditions,  to investigate priming treatments on different planting dates and to compare early planting dates on the farms.
Materials and Methods: The experimental study was carried out as a factorial experiment in a completely randomized design with four replications in the Laboratory of Seed Technology of Kashmar University Jihad. The first factor is five primings (Concentrations of ZnSO4 (10 mM), Humic acid (2.5 cc) and the combination of Humic acid and Zinc sulfate, Biological materials (Pota Barvar 2), no treatment (control) and the second factor is five levels of temperature: 10, 12, 14, 16 and 18 °C. Field studies were carried out in Agricultural and Natural Resources Research Center of Kashmar in three separate experiments in 2018. The research was carried out in a completely randomized block design with three replications on three planting dates (March 25th, April 15th, and May 4th, 2018). In each experiment, priming treatments were applied similarly to field experiments.
Results: The results of the current experimental study showed that temperature, priming and temperature interaction with priming had a significant effect on all the traits studied. The highest percentage and rate of germination were observed at 18 °C and priming with Pota Barvar 2. The results also showed that planting date had a significant effect on all the traits studied in the field experiment. Priming showed a significant difference only in stem fresh weight. The interaction effect of priming and planting date was not significant for the traits studied. The highest germination percentage was obtained on April 15’s planting date. By planting later than March 25 to 15 April, a decrease of 74% was observed in the rate of germination. Among priming treatments, the combination of Zinc Sulfate and Humic acid showed a significant superiority, compared with other treatments. 
Conclusion: The findigns suggest that due to the high sensitivity of seed germination of sour tea at low temperatures, the planting date in each area should be carefully chosen so that it does not coincide with temperatures below 18 °C.
 
Highlights:
  1. Evaluation of the effect of seed priming treatment at different temperatures on germination characteristics of Roselle under laboratory conditions.
  2. A different priming treatment leads to increases in germination characteristics of Roselle.


Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.