Volume 11, Issue 1 ((Spring and Summer) 2024)                   Iranian J. Seed Res. 2024, 11(1): 167-181 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Piri R, Sharifzadeh F, Majnounhosseini N. (2024). Quantifying seed germination response of Kochia (Kochia scoparia) to varying temperatures and osmotic stress due to salinity. Iranian J. Seed Res.. 11(1), 167-181. doi:10.61186/yujs.11.1.167
URL: http://yujs.yu.ac.ir/jisr/article-1-622-en.html
Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran. , sharifz@ut.ac.ir
Abstract:   (512 Views)
Extended abstract
Introduction: Currently, temperature and salinity stresses are spreading globally, which have a detrimental impact on the performance of various plants, particularly during seed germination and seedling growth stages. Therefore, the objective of this laboratory study was to examine the influence of temperature treatments and salinity levels on germination characteristics and initial seedling growth of kochia.
Materials and Methods: In the first experiment, temperature at nine levels (1, 5, 10, 15, 20, 25, 30, 35, and 40°C), and in the second experiment, salinity (osmotic potential at six levels (no stress, -0.4, -0.8, -1.2, -1.6, and -1.8 MPa) were considered as experimental treatments. In order to determine the cardinal temperatures (base, optimal, and ceiling) of germination in kochia seeds, non-linear regression models including the segmented, dent-like, and modified beta models were used.
Results: In the first experiment, the response of kochia germination rate was predicted by a segmented function with R2, RMSE, and AIC (Akaike) values of 0.92, 1.32, and 65.69, respectively, which indicates the high accuracy and precision of this model in predicting the cardinal temperatures of kochia seed germination compared with the other two models. In this model, the estimated base temperature for germination was 0.7°C, the optimal temperature was 20°C, and the ceiling temperature was 44.3°C. In the second experiment, salinity stress negatively affected the characteristics of seed germination in kochia, including germination percentage, germination rate, percentage of normal seedlings, seedling length, and seedling vigor index. The highest germination percentage of kochia seeds was observed under salt-free conditions with 88.66%, which decreased to 13% under -1.8 MPa salinity conditions.
Conclusions: In general, the results showed that the segmented model is more efficient and accurate than the other two models in predicting germination of kochia seeds under different temperature treatments. Also, increasing levels of salinity stress significantly reduced germination potential and seedling growth of kochia seeds, so that at a stress level of -1.8 MPa, germination rate decreased by 75% compared with stress-free condition.

Highlights:
  1. The cardinal temperatures (base, optimum, and ceiling temperatures) of kochia seed germination were determined.
  2. This research introduced 1°C temperature and -1.8 MPa of salinity level as low temperature stress and critical salinity, respectively.
Full-Text [PDF 554 kb]   (128 Downloads)    
Type of Study: Research | Subject: Seed Physiology
Received: 2024/08/14 | Revised: 2024/09/5 | Accepted: 2024/09/6 | ePublished: 2024/09/21

References
1. Abdulbaki, A.A., and Anderson J.D. 1975. Vigour determination in soybean seed by multiple criteria. Crop Science, 13: 630-633. [DOI:10.2135/cropsci1973.0011183X001300060013x]
2. Akram-Ghaderi, F., Soltani, E., Soltani A., and Miri, A.A. 2008. Effect of priming on response of germination to temperature in cotton. Journal of Agricultural Science and Natural Resources, 15(3): 44-51.
3. Balfagón, D., Zandalinas, S.I., Mittler, R., and Gómez‐Cadenas, A. 2020. High temperatures modify plant responses to abiotic stress conditions. Physiologia Plantarum, 170(3): 335-344. [DOI:10.1111/ppl.13151] [PMID]
4. Balouchi, H., Soltani Khankahdani, V., Moradi, A., Gholamhoseini, M., Piri, R., Heydari, S.Z., and Dedicova, B. 2023. Seed fatty acid changes germination response to temperature and water potentials in six sesame (Sesamum indicum L.) cultivars: Estimating the cardinal temperatures. Agriculture, 13(10): 1936. [DOI:10.3390/agriculture13101936]
5. Bradford, K.J. 2017. Water relations in seed germination. In Seed development and germination. Routledge. pp 351-396. [DOI:10.1201/9780203740071-13]
6. Dashti, M., Kafi, M., Tavakkoli, H., and Mirza, M. 2015. Cardinal temperatures for germination of Salvia leriifolia Benth. Herba Polonica, 61(1): 5-18. [DOI:10.1515/hepo-2015-0006]
7. Deihimfard, R., Nazari, S., and Qorani, Y. 2017. Estimation of cardinal temperatures of Lepyrodiclis holosteoides using regression models. Iranian Journal of Seed Science and Technology, 6(2): 107-117. [In Persian]
8. Donohue, K., Casas, R.R.D., Burghardt, L., Kovach, K., and Willis, C.G. 2010. Germination, post-germination adaptation, and species ecological ranges. Annual Review of Ecology, Evolution, and Systematics. 41: 293-319. [DOI:10.1146/annurev-ecolsys-102209-144715]
9. Duarte, A.A., de Lemos Filho, J.P., and Marques, A.R. 2018. Seed germination of bromeliad species from the campo rupestre: thermal time requirements and response under predicted climate-change scenarios. Flora, 238: 119-128. [DOI:10.1016/j.flora.2017.05.016]
10. Eberle, C.A., Forcella, F., Gesch, R., Peterson, D., and Eklund, J. 2014. Seed germination of calendula in response to temperature. Industrial Crops and Products, 52: 199- 204. [DOI:10.1016/j.indcrop.2013.10.031]
11. Edalat, M., and Kazemeini, S.A. 2014. Estimation of cardinal temperatures for seedling emergence in corn. Australian Journal of Crop Science, 8(7): 1072-1078.
12. El Sabagh, A., Hossain, A., Barutçular, C., Iqbal, M.A., Islam, M.S., Fahad, S., Sytar, O., Çiğ, F., Meena, R.S., and Erman, M. 2020. Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: An outlook of arid and semi-arid regions. Environment, Climate, Plant and Vegetation Growth. Springer Nature, AG Switzerland, pp. 503-533. [DOI:10.1007/978-3-030-49732-3_20]
13. Fakhfakh, L.M., Anjum, N.A., and Chaieb, M. 2018. Effects of temperature and water limitation on the germination of Stipagrostis ciliata seeds collected from Sidi Bouzid Governorate in Central Tunisia. Journal of Arid Land, 10: 304-315. [DOI:10.1007/s40333-018-0050-x]
14. Fazeli-Nasab, B., Khajeh, H., Piri, R., and Moradian, Z. 2023. Effect of humic acid on germination characteristics of Lallemantia royleana and Cyamopsis tetragonoloba under salinity stress. Iranian Journal Seed Research, 9(2): 41-52. [In Persian] [DOI:10.61186/yujs.9.2.51]
15. Ganjeali, A., Parsa, M., and Amiri-Deh-Ahmadi, R. 2012. Determination of cardinal temperatures and thermal time requirement during germination and emergence of chickpea genotypes (Cicer arietinum L.). Iranian Journal Pulses Research, 2(2): 97-108. [In Persian]
16. Gul, B., Ansari, R., Flowers, T.J., and Khan, M.A. 2013. Germination strategies of halophyte seeds under salinity. Environmental and Experimental Botany, 92: 4-18. [DOI:10.1016/j.envexpbot.2012.11.006]
17. Hameed, A., Rasheed, A., Gul, B., and Khan, M.A., 2014. Salinity inhibits seed germination of perennial halophytes Limonium stocksii and Suaeda fruticosa by reducing water uptake and ascorbate dependent antioxidant system. Environmental and Experimental Botany, 107: 32-38. [DOI:10.1016/j.envexpbot.2014.04.005]
18. Hannachi, S., and Van Labeke, M.C. 2018. Salt stress affects germination, seedling growth and physiological responses differentially in eggplant cultivars (Solanum melongena L.). Scientia Horticulturae, 228: 56-65. [DOI:10.1016/j.scienta.2017.10.002]
19. Ikic, I., Maricevic, M., Tomasovic, S., Gunjaca, J., Atovic Z.S., and Arcevic. H.S. 2012. The effect of germination temperature on seed dormancy in Croatian-grown winter wheats. Euphytica, 188: 25-34. [DOI:10.1007/s10681-012-0735-8]
20. Jafari, B., Kordrostami, M., and Ghasemi-Soloklui, A.A. 2024. Maximizing tomato seed germination: quantifying cardinal temperatures and thermal time requirements. International Journal of Horticultural Science and Technology, 11(1): 83-94.
21. Kafi, M., Asadi, H., and Ganjeali, A. 2010. Possible utilization of high-salinity waters and application of low amounts of water for production of the halophyte Kochia scoparia as alternative fodder in saline agroecosystems. Agricultural Water Management, 97(1): 139-147. [DOI:10.1016/j.agwat.2009.08.022]
22. Khaeim, H., Kende, Z., Balla, I., Gyuricza, C., Eser, A., and Tarnawa, A. 2022. The effect of temperature and water stresses on seed germination and seedling growth of wheat (Triticum aestivum L.). Sustainability, 14(7): 1-21. [DOI:10.3390/su14073887]
23. Kozłowska, W., Matkowski, A., and Zielińska, S. 2022. Light intensity and temperature effect on Salvia yangii (BT Drew) metabolic profile in vitro. Frontiers in Plant Science, 13: 888509. [DOI:10.3389/fpls.2022.888509] [PMID] []
24. Lamichhane, J.R., Constantin, J., Schoving, C., Maury, P., Debaeke, P., Aubertot, J.N., and Dürr, C. 2020. Analysis of soybean germination, emergence, and prediction of a possible northward establishment of the crop under climate change. European Journal of Agronomy, 113: 125972. [DOI:10.1016/j.eja.2019.125972]
25. Moghaieb, R.E., Saneoka, H., and Fujita, K. 2004. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima. Plant Science, 166(5): 1345-1349. [DOI:10.1016/j.plantsci.2004.01.016]
26. Moradi, A. and Piri, R. 2018. Enhancement of salinity stress tolerance in Cumin (Cuminum cyminum L.) as affected by plant growth promoting rhizobactria during germination stage. Journal of Plant Process and Function, 6(22): 47-53. [In Persian]
27. Moradi, A., Hoseini-moghadam M. and Piri, R. 2018. Effect of seed inoculation with Plant Growth Promoting Rhizobactria (PGPR) on some germination, biochemical indices and element contents of fennel (Foeniculum vulgare L.) under salinity stress. Iranian Journal of Field Crop Science, 49(3): 151-165. [In Persian]
28. Nikolić, N., Ghirardelli, A., Schiavon, M., and Masin, R. 2023. Effects of the salinity-temperature interaction on seed germination and early seedling development: a comparative study of crop and weed species. BMC Plant Biology, 23(1): 446. [DOI:10.1186/s12870-023-04465-8] [PMID] []
29. Pradheeban, L., Nissanka, N., and Suriyagoda, L.D.B. 2014. Clustering of rice (Oryza sativa L.) varieties cultivated in Jaffna District of Sri Lanka based on salt tolerance during germination and seedling stages. Tropical Agriculture Research, 25(3): 358-375. [DOI:10.4038/tar.v25i3.8045]
30. Qados, A.M.A. 2011. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba L.). Journal of the Saudi Society of Agricultural Sciences, 10(1):7-15. [DOI:10.1016/j.jssas.2010.06.002]
31. Ranjbar, G., and Ghadiri, H. 2017. Quantification of seedling emergence of kochia (Kochia indica) affected by temperature, salinity and seeding depth. Iranian Journal of Seed Research, 3(2): 41-55. [In Persian] [DOI:10.29252/yujs.3.2.41]
32. Sabouri Rad, S., Kafi, M., Nezami, A., and Banayan, M. 2013. Investigating the germination behavior of kochia (Kochia scoparia L. Schard) seeds in response to different temperatures and salinity stresses. Journal of Agroecology, 4(4): 282-293. [In Persian]
33. Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M., and Hasanuzzaman, M. 2021. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10 (277): 1-37. [DOI:10.3390/antiox10020277] [PMID] []
34. Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Hussan, M.U., and Sarwar, M.I. 2019. A review: Impact of salinity on plant growth. Natural Sciences, 17(1): 34-40.
35. Sarker, A., Hossain, M.I., and Kashem, M.A. 2014. Salinity (NaCl) tolerance of four vegetable crops during germination and early seedling growth. International Journal of Latest Research in Science and Technology, 3(1): 91-95.
36. Soltani, A., Robertson, M.J., Torabi, B., Yousefi-Daz, M., and Sarparast, R. 2006. Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology, 138: 156-167. [DOI:10.1016/j.agrformet.2006.04.004]
37. Szczerba, A., Agnieszka, P., Jakub, P., Przemysław, K., Marta H., and Franciszek D. 2021. Effect of low temperature on germination, growth, and seed yield of four soybean (Glycine max L.) cultivars. Agronomy, 11(800): 1-17. [DOI:10.3390/agronomy11040800]
38. Torabi, B., Adibniya, M., and Rahimi, A. 2015. Seedling emergence response to temperature in safflower: measurements and modeling. International Journal of Plant Production, 9(3): 393-412.
39. Torabi, B., Archontoulis, S.V., and Hoogenboom, G. 2020. A new function for prediction of biological processes response to temperature. International Journal of Plant Production, 14: 9-22. [DOI:10.1007/s42106-019-00063-7]
40. Ullah, A., Sadaf, S., Ullah, S., Alshaya, H., Okla, M.K., Alwasel, Y.A., and Tariq, A. 2022. Using halothermal time model to describe barley (Hordeum vulgare L.) seed germination response to water potential and temperature. Life, 12 (209): 1-15. [DOI:10.3390/life12020209] [PMID] []
41. Van't Hoff, J. H. 1887. The role of osmotic pressure in the analogy between solution and gases. Zeitschrift Physicalische Chemie, 1: 481-508. [DOI:10.1088/1478-7814/9/1/344]
42. Verma, S.K., Bjpai, G.C., Tewari, S.K., and Singh, J. 2005. Seedling index and yield as influenced by seed size in pigeon pea. Legume Research, 28(2): 143-145.
43. Walck, J.L., Hidayati, S.N., Dixon, K.W., Thompson, K.E.N., and Poschlod, P. 2011. Climate change and plant regeneration from seed. Global Change Biology, 17(6): 2145-2161. [DOI:10.1111/j.1365-2486.2010.02368.x]
44. Yan, A., and Chen, Z. 2020. The control of seed dormancy and germination by temperature, light and nitrate. The Botanical Review, 86(1): 39-75. [DOI:10.1007/s12229-020-09220-4]
45. Zhi, L., and Hu, X. 2023. Adventitious root regeneration: Molecular basis and influencing factors. Phyton, 92(10): 2825-2840. [DOI:10.32604/phyton.2023.030912]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.