Volume 10, Issue 1 ((Spring and Summer) 2023)                   Iranian J. Seed Res. 2023, 10(1): 91-111 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zinati L, Siahmarguee A, Ghaderi-Far F, Yones-Abadi M, Singh Chauhan B. (2023). Evaluating the effect of high temperatures and burial depth on seed fate of different species of Amaranthus weed. Iranian J. Seed Res.. 10(1), : 6 doi:10.61186/yujs.10.1.91
URL: http://yujs.yu.ac.ir/jisr/article-1-556-en.html
Gorgan University of Agricultural Sciences and Natural Resources , Siahmarguee@gau.ac.ir
Abstract:   (773 Views)
Extended Abstract
Introduction: The different species of Amaranthus species are among the most important damaging weeds in the world. Due to the importance of studying the effect of management factors on seed dynamics of different weed species, this experiment aimed to investigate the effect of burial depth and high temperatures on the seed dynamic of different species of Amaranthus in Golestan province including white pigweed (A. albus), prostrate pigweed (A. belitoides), hybrid Amaranthus (A. chlorostachys), redroot pigweed (A. retrofelexus) and green Amaranthus (A. viridis) were performed.
Materials and Methods: This research was conducted on five amaranthus species of white pigweed, prostrate pigweed, hybrid Amaranthus, redroot pigweed, and green Amaranthus at the seed laboratory and greenhouse of Gorgan University of Agricultural Sciences and Natural Resources. In the first experiment, seed emergence of different species of Amaranthus was studied in eight burial depths including 0, 1, 2, 3, 4, 5, 7, and 10 cm. In the second experiment, seeds were exposed to 50, 60, 70, 80, 90, 100, and 110 °C temperatures for 5, 10, and 15 minutes
Results: All seeds of A. blitoides and A. viridis germinated in the topsoil (zero depth); But, in A. albus, A. retroflexus, A. chlorostachys, 93%, 83%, and 3% of the seeds were emergence at the soil surface, respectively. By increasing the burial depth to one centimeter, the percentage of seeds emergence in different species of Amaranthus decreased significantly and was negligible at 2 cm depth. Germination test performed on retrieved seeds showed that zero to 16% of the seeds were able to germinate in petri dish, and most of the non-germinated seeds were viable. In all species except for A. chlorostachys high temperatures reduced the germination percentage.
Conclusion: Due to the reduction of seed germination percentage of different species of Amaranthus from a depth of more than one centimeter of soil, it seems that the use of conservation and conventional tillage methods has a good potential to reduce infestation of fields by these weeds. Also, although high temperatures reduce weed infestation in fields, they do not have a significant effect on depleting the seed bank of these species.

Highlights:
1- Seed dynamics of different species of Amaranthus were affected by burial depth and high temperature
2- Deep burial of seeds of different species of Amaranthus causes the stability of their seeds in the soil seed bank.
Article number: 6
Full-Text [PDF 809 kb]   (186 Downloads)    
Type of Study: Research | Subject: Seed Ecology
Received: 2022/05/3 | Revised: 2024/02/21 | Accepted: 2022/10/30 | ePublished: 2023/11/26

References
1. Asgarpour, R., Ghorbani, R. and Khajeh Hosseini, M. 2015. Study of survival of Euphorbia maculata seeds in different environmental conditions. Journal of Plant Protection, 28(4): 490-499. [In Persian with English Summary]
2. Assad, R., Reshi, Z., Jan, S. and Rashid, I. 2017. Biology of Amaranths. The Botanical Review, 83(4): 382-436. [DOI:10.1007/s12229-017-9194-1]
3. Azadi, R. 2013. Amaranthus species in Iran and their use values. Third National Conference on Medicinal Plants, Amol Iran. [In Persian with English Summary]
4. Bensch, C.N., Horak, M.J. and Peterson, D. 2003. Interference of redroot pigweed (Amaranthus retroflexus). Palmer amaranth (A. palmeri) and common waterhemp (A. rudis) in soybean. Weed Science, 51: 37-43. [DOI:10.1614/0043-1745(2003)051[0037:IORPAR]2.0.CO;2]
5. Benvenuti, S. and Mazzoncini, M. 2021. Active weed seed bank: soil texture and seed weight as key factors of burial-depth inhibition. Agronomy, 11(2): 210. [DOI:10.3390/agronomy11020210]
6. Benvenuti, S., MacChia, M. and Miele, M. 2001. Quantitative analysis of buried weed seedling emergence with increasing soil depth. Weed Science, 49: 528-535. [DOI:10.1614/0043-1745(2001)049[0528:QAOEOS]2.0.CO;2]
7. Bicalho, E.M., Soares-da-Mota L.A. and Garcia Q.S. 2018. Temperature and light requirements for germination of species of Velloziaceae from different Brazilian rocky outcrops. Acta Botanica Brasilica, 32(2): 240-246. [DOI:10.1590/0102-33062017abb0310]
8. Boguzas, V., Marcinkeviciene, A. and Kairyte, A. 2004. Quantitative and qualitative evolution of weed seed bank in organic farming. Agronomy Research, 2: 13-22.
9. Bradstock, R.A. and Auld T.D. 1995. Soil temperatures during experimental bushfires in relation to fire intensity: consequences for legume germination and fire management in south-eastern Australia, Journal of Applied Ecology, 32(1): 76-84. [DOI:10.2307/2404417]
10. Budin, J.T., Breen, W.M. and Patnum, D.H. 1996. Some compositional properties of seeds and oils of eight Amaranthus species. Journal of the American Oil Chemists' Society, 73: 475-481. [DOI:10.1007/BF02523922]
11. Carrington, M.E. 2010. Effects of Soil Temperature during Fire on Seed Survival in Florida Sand Pine Scrub. International Journal of Forestry Research, 2: 1-12. [DOI:10.1155/2010/402346]
12. Chauhan, B.S. and Johnson, D.E. 2009. Germination ecology of spiny (Amaranthus spinosus) and slender amaranth (A. viridis): troublesome weeds of direct-seeded rice. Weed Science, 57: 379-385. [DOI:10.1614/WS-08-179.1]
13. Costea, M.S., Weaver, E. and Tardif, F.J. 2004. The biology of Canadian weeds. 130. Amaranthus retroflexus L. A. powellii S. Watson and A. hybridus L. Canadian Journal of Plant Science, 84: 631-668. [DOI:10.4141/P02-183]
14. Cristaudo, A., Gresta, F., Luciani, F. and Restuccia, A. 2007. Effects of after-harvest period and environmental factors on seed dormancy of Amaranthus species. Weed Research, 47: 327-334. [DOI:10.1111/j.1365-3180.2007.00574.x]
15. Das, S. and Das, S. 2016. Amaranths: the crop of great prospect. Amaranthus: A promising crop of future, 13-48. [DOI:10.1007/978-981-10-1469-7_3]
16. Downes, K.S., Light, M.E., Posta, M., Kahout, L. and Van Staden, J. 2014. Do fire related cues. Including smoke water, karrikinolide, glyceronitrile and nitrate stimulate the germination of 17 Anigozanthos taxa and Blancoa canescens (Haemodoraceae). Australian Journal of Botany, 62: 347-358. [DOI:10.1071/BT13189]
17. Faccini, D. and Vitta, J.I. 2004. Germination characteristics of Amaranthus quitensis as affected by seed production date and duration of burial. Weed Research, 45: 371-378. [DOI:10.1111/j.1365-3180.2005.00469.x]
18. Ghaderi-Far, F., Alimagham, S.M., Rezai Moghadam, H. and Haghighi, M. 2012. Influence of environmental factors on seed germination and seedling emergence of rye (Secale cereale L.) as a volunteer plant in wheat fields. Electronic Journal of Crop Production, 5: 121-133. [In Persian with English Summary]
19. Ghebrehiwot, H.M., Kulkarni, M.G., Kirkman, K.P. and Van Staden, J. 2012. Smoke and heat: influence on seedling emergence from the germinable soil seed bank of mesic grassland in South Africa. Plant Growth Regulation, 66: 119-127. [DOI:10.1007/s10725-011-9635-5]
20. Gutterman, Y., Corbineau, F. and Come, D. 1992. Interrelated effects of temperature. light and oxygen on Amaranthus caudatus L. seed germination. Weed Research, 32: 111-117. [DOI:10.1111/j.1365-3180.1992.tb01868.x]
21. Hartzler, R.G., Battles, B.A. and Nordby, D. 2004. Effect of common waterhemp (Amaranthus rudis) emergence date on growth and fecundity in soybean. Weed Science, 52: 242-245. [DOI:10.1614/WS-03-004R]
22. Heidarian, H., Hadi, M.R., Mahmoodabadi, H.S. and Kalateh, M.N. 2012. Competitive effects of redroot pigweed (Amaranthus retroflexus) on three sunflowers (Helianthus annus) cultivars. International Journal of Agronomy and Plant Production, 3: 84-88. [In Persian with English Summary]
23. Holm, L.G., Plunkett, D.L., Pancho, J.V. and Herberger, J.P. 1977. The World's Worst Weeds Distribution and Biology. University Press of Hawaii.
24. Jha, P., Norsworthy, J.K. and Garcia, J. 2014. Depletion of an artificial seed bank of Palmer Amaranth (Amaranthus palmeri) over four years of burial. American Journal of Plant Sciences, 5: 1599-1606. [DOI:10.4236/ajps.2014.511173]
25. Keeley, J.E. and Pausas, J.G. 2018. Evolution of 'smoke' induced seed germination in pyroendemic plants. South African Journal of Botany, 115: 251-255. [DOI:10.1016/j.sajb.2016.07.012]
26. Keeley, P.E. Carter, C.H. and Thullen, R.J. 1987. Influence of planting date on growth of palmer amaranth (Amaranthus palmeri). Weed Science, 35: 199-204. [DOI:10.1017/S0043174500079054]
27. Leon, R.G. and Owen, M.D.K. 2006. Tillage systems and seed dormancy effects on common waterhemp (Amaranthus tuberculatus) seedling emergence. Weed Science, 54: 1037-1044. [DOI:10.1614/WS-06-009.1]
28. Loddo, D., Ghaderi-Far, F., Rastegar, Z. and Masin, R. 2017. Base temperatures for germination of selected weed species in Iran. Plant Protection Science, 54(1): 60-66. [DOI:10.17221/92/2016-PPS]
29. Mas, M. and Verdu, A.M.C. 2002. Effect of thermal shocks on the germination of Amaranthus retroflexus. Use solver tool to model cumulative germination. Seed Science and Technology, 30: 299-310.
30. Masin, R., Zuin, M.C., Otto, S. and Zanin, G. 2006. Seed longevity and dormancy of four summer annual grass weeds in turf. Weed Research, 46(5): 362-370. [DOI:10.1111/j.1365-3180.2006.00520.x]
31. Melander, B., Rasmussen, I.A. and Barberi, P. 2005. Integrating physical and cultural methods of weed control- examples from European research. Weed Science, 53: 369-381. [DOI:10.1614/WS-04-136R]
32. Minbashi, M., Zand, E. and Mighani, F. 2012. Non-chemical Weed Management: Principles. Concepts and Technology. Jahad Daneshgahi Press, 334p. [In Persian with English Summary]
33. Momen-Yesaghi, R., Siahmarguee, A., Zeinali, E., Ghaderi far, F. and Kamkar, B. 2017. The study of weed population and seed bank dynamic and soybean yield in different tillage methods. Journal of Agroecology, 9(3): 575-592. [In Persian with English Summary]
34. Nelson, D.C., Flematti, G.R., Ghisalberti, E.L., Dixon, K.W. and Smith, S.M. 2012. Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology, 63: 107-130. [DOI:10.1146/annurev-arplant-042811-105545] [PMID]
35. Oryokot, J.O.E., Murphy, S.D. and Swanton, C.J. 1997. Effect of tillage and corn on pigweed (Amaranthus spp.) seedling emergence and density. Weed Science, 45: 120-126. [DOI:10.1017/S0043174500092560]
36. Paul, R., Congdon, A.R. and Clarke, P.J. 2003. Fire-related cues break seed dormancy of six legumes of tropical eucalypt savannas in north-eastern Australia. Australia Ecology, 28: 507-16. [DOI:10.1046/j.1442-9993.2003.01307.x]
37. Ramos, D.M., Valls, J.F.M., Borghetti, F. and Ooi, M. 2019. Fire cues trigger germination and stimulate seedling growth of grass species from Brazilian savannas. American Journal of Botany, 106(9): 1190-1201. [DOI:10.1002/ajb2.1345] [PMID]
38. Ramos‐Neto, M.B. and Pivello, V.R. 2000. Lightning fires in a Brazilian savanna national park: rethinking management strategies. Environmental Management, 26: 675-684. [DOI:10.1007/s002670010124] [PMID]
39. Ribeiro, L.C., Pedrosa, M. and Borghetti, F. 2012. Heat shock effects on seed germination of five Brazilian savanna species. Plant Biology, 15(1): 152-157. [DOI:10.1111/j.1438-8677.2012.00604.x] [PMID]
40. Sellers, B.A., Smeda, R.J., Johnson, W.G., Kendig, J.A. and Ellersieck, M.R. 2003. Comparative growth of six Amaranthus species in Missouri. Weed Science, 51: 329-333. [DOI:10.1614/0043-1745(2003)051[0329:CGOSAS]2.0.CO;2]
41. Siahmarguee, A., Kocheki, A.R., Nasiri Mahalati, M. and Mahghani, S. 2011. Effect of integrated weed management on soil seed bank dynamic of weeds in sugar beet (Beta vulgaris L.). Journal of Agroecology, 3(2): 151-162. [In Persian with English Summary]
42. Steckel, L.E., Sprague, C.L., Stoller, E.W., Wax, L.M. and Simmons, F.W. 2007. Tillage. cropping system. and soil depth effect on common waterhemp (Amaranthus rudis) seed-bank persistence. Weed Science, 55: 235-239. [DOI:10.1614/WS-06-198]
43. Telewski, F.W. and Zeevaart, J.A.D. 2002. The 120-years period for Dr. Beal's seed viability experiment. American Journal of Botany, 89: 264-270. [DOI:10.3732/ajb.89.8.1285] [PMID]
44. Thomas, P.B., Morris, E.C. and Auld T.D. 2007. Response surfaces for the combined effects of heat shock and smoke on germination of 16 species forming soil seed banks in southeast Australia. Austral Ecology, 32(6): 605-616. [DOI:10.1111/j.1442-9993.2007.01730.x]
45. Thomas, W.E., Burke, I.C., Spears, J.F. and Wilcut, J.W. 2006. Influence of environmental factors on slender amaranth (Amaranthus viridis) germination. Weed Science, 54: 316-320. [DOI:10.1614/WS-05-54.2.316]
46. Vidotto, F., Palo, F.D. and Ferrero, A. 2013. Effect of short-duration high temperatures on weed seed germination. Annals of Applied Biology, 163: 454-465. [DOI:10.1111/aab.12070]
47. Weller, S., Florentine, S., Javaid, M.M., Welgama, A., Chadha, A., Chauhan, B.S. and Turville, C. 2021. Amaranthus retroflexus L. (Redroot Pigweed): effects of elevated CO2 and soil moisture on growth and biomass and the effect of radiant heat on seed germination. Agronomy, 11: 728. [DOI:10.3390/agronomy11040728]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.