Volume 8, Issue 2 ((Autumn & Winter) 2022)                   Iranian J. Seed Res. 2022, 8(2): 113-130 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Miri M, Amerian M, Edalat M, Baradaran Firouzabadi M, Makarian H. (2022). Quantifying the Germination of Fagopyrum esculentum Moenc. Using Regression and Thermal-Time Models. Iranian J. Seed Res.. 8(2), 113-130. doi:10.52547/yujs.8.2.113
URL: http://yujs.yu.ac.ir/jisr/article-1-500-en.html
Associate professor of Agronomy, Faculty of Agriculture, Shahroud University of Technology, Shahroud, Iran , Amerianuk@yahoo.co.uk
Abstract:   (2431 Views)
Extended Abstract
 Introduction: Germination is considered the first and most important stage of establishment and consequently, successful competition which is influenced by genetic and environmental factors. Among the environmental factors influencing the germination, temperature and light are the most important ones. Using different models, the germination response of seeds to temperature can be quantified; therefore, this study was performed to investigate the effect of temperature on germination and to quantify the germination response of Buckwheat seed (Fagopyrum esculentum Moenc) to temperature using nonlinear regression models and thermal-time model.
Materials and methods: The seeds were germinated in 4 replications of 25 seeds under 8 constant temperature treatments (5, 10, 15, 20, 25, 30, 35 and 40 ° C). Using a three-parameter logistic model, Buckwheat seed germination was quantified at different temperature levels and the percentage and time to reach 50% germination were obtained. Four nonlinear regression models and a thermal-time model were used to quantify the response of Buckwheat seed germination rate to temperature. To compare the models and determine the most appropriate model, the root mean square error index (RMSE), coefficient of determination (R2), coefficient of variation (CV) and standard error (SE) were used for the observed germination rate versus the predicted germination rate.
Results: The results indicated that temperature affected the seedling length, normal seedling percentage, seed vigor and the germination rate as well as germination percentage. Also, the results showed that germination characteristics increased with increasing temperature up to 20 and 25 °C. Comparison of the three models based on the root mean square error (RMSE) of germination time, the coefficient of determination (R2), CV and SE, the best model to determine the cardinal temperatures of Fagopyrum esculentum was the dent-like model. The results of thermal-time model showed that the base temperature of Fagopyrum esculentum seeds was 4.01 ° C and the thermal-time coefficient was 1242.6 h° C.
Conclusion: Utilization of non-linear regression models (segmented, dent-like and beta) and thermal-time model to quantify the germination response of Fagopyrum esculentum response to different temperatures led to acceptable results. Therefore, germination rate and percentage may be predicted using the outputs of these models at different temperatures.

  1. The best temperature for Fagopyrum esculentum Moenc. seed germination is 20-25 Celsius.
  2. The dent-like model was determined the most appropriate model for estimating the cardinal temperatures of Buckwheat.
Article number: 8
Full-Text [PDF 712 kb]   (573 Downloads)    
Type of Study: Research | Subject: Seed Physiology
Received: 2020/08/22 | Accepted: 2021/01/25

1. Acosta, J.M., Bentivegna, D.J., Panigo, E.S., Dellaferrera, I. and Pereta, M.G. 2012. Factors affecting seed germination and emergence of Gomphrena perennis. Weed Research, 53(1): 69-75. [DOI:10.1111/j.1365-3180.2012.00954.x]
2. Alvarado, V. and Bradford, K.J. 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell & Environment 25(8): 1061-1069. [DOI:10.1046/j.1365-3040.2002.00894.x]
3. Ansari, O. 2017. Quantification of Malva sylvestris L. germination response to environmental factors and land suitability assessment for its presence in GIS media. A thesis submitted in partial fulfillment of the requirements for the degree of Ph.D. in Seed Science and Technology at Agronomy. Gorgan University of Agricultural Sciences and Natural Resources.
4. Ansari, O., Gherekhloo, J., Kamkar, B. and Ghaderi-Far, F. 2016. Breaking seed dormancy and determining cardinal temperatures for Malva sylvestris using nonlinear regression. Seed Science and Technology, 44(3): 1-14. [DOI:10.15258/sst.2016.44.3.05]
5. Bradford, K.J. 2002. Application of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50(2): 248-260. [DOI:10.1614/0043-1745(2002)050[0248:AOHTTQ]2.0.CO;2]
6. Cave, R.L., Brich, C.J., Harmmer, G.L., Erwin, J.E. and Johston, M.E. 2011. Cardinal temperatures and thermal time for seed germination of Brunonia australis (Goodeniaceae) and calandrinia sp. (Portulacaceae). HortScience, 45(5): 753-758. [DOI:10.21273/HORTSCI.46.5.753]
7. Cawoy, V., Ledent, J.F., Kinet, J.M. and Jacquemart, A.L. 2009. Floral biology of common buckwheat (Fagopyrum esculentum Moench). The European Journal of Plant Science and Biotechnology, 3(1): 1-9.
8. Covell, S., Ellis, R.H., Roberts, E.H., and Summerfield, R.J. 1986. The influence of temperature on seed germination rate in grain legumes I: A comparison of chickpea, lentil, soybean and cowpea at constant temperatures. Journal of Experimental Botany, 37: 705-715. [DOI:10.1093/jxb/37.5.705]
9. Del Monte, J.P. and Dorado, J. 2011. Effects of light conditions and after-ripening time on seed dormancy loss of Bromus diandrus Roth. Weed Research 51(6): 581-590. [DOI:10.1111/j.1365-3180.2011.00882.x]
10. Del Monte, J.P., Aguado, P.L. and Tarquis, A.M. 2014. Thermal time model of Solanum sarrachoides germination. Seed Science Research, 24(4): 321-330. [DOI:10.1017/S0960258514000221]
11. Derakhshan, A., Gherekhloo, J., Parvar, E., 2011, Estimation of cardinal tempereatures and thermal time requirement for Cyperus difformis seed germination. Iranian Journal of Weed Science, 9(1): 27-38. [In Persian with English Summary].
12. Derakhshan, A., Gherekhloo, J., Vidal, R.B. and De Prado, R. 2013. Quantitative description of the germination of littleseed canarygrass (Phalaris minor) in response to temperature. Weed Science, 62(2): 250-257. [DOI:10.1614/WS-D-13-00055.1]
13. Dori, M., Kamkar, B., Aghdasi, M., Kamshi- Kamr, E. 2015. Determination of the best model to evaluate germination cardinal temperature of Silybum marianum as a medicinal plant, Iran Journal of Seed Science and Technology, 3(2): 189-200. [In Persian with English Summary].
14. Dumur, D., Pilbeam, C.J. and Craigon, J. 1990. Use of the Weibull function to calculate cardinal temperatures in faba bean. Journal of Experimental Botany, 41(11): 1423-1430. [DOI:10.1093/jxb/41.11.1423]
15. Garcia-Huidobro, J., Monteith, J.L. and Squier, G.R. 1982. Time temperature and germination of pearl millet (Pennisetum typhoides, S. & H.) I. Journal of Experimental Botany, 33: 288-296. [DOI:10.1093/jxb/33.2.288]
16. Ghaderi-Far, F., Soltani, A. and Sedeghipour H.R. 2009. Evaluation of nonlinear regeression models in quantifying germination rate of medicinal pumpkin (Cucurbita pepo L. subsp. Pepo. Convar. Pepo var. styriaca Greb), borago (Borago officinalis L.) and black cumin (Nigella sativa L.) to temperature. Journal of Plant Production, 16(4): 1-19. [In Persian with English Summary].
17. Ghaderi-Far, F. and Soltani, E. 2015. Evaluation of sesame cultivars germination on response to temperature: determination of cardinal temperatures and thermal tolerance. Journal of Crop Sciences, 46(3): 473-483. [In Persian with English Summary].
18. Hardegree, S.P. 2006. Predicting germination response to temperature. I. Cardinal-temperature models and subpopulation-specific regression. Annals of Botany, 97(6): 1115-1125. [DOI:10.1093/aob/mcl071] [PMID] [PMCID]
19. ISTA, 2008. The international rules for seed testing. International Seed testing Association, 138p..
20. Izquierdo, J., Gonzalez-Andujar, J., Bastida, F., Lezaun, J.A. and Sanchezdel Arco, M.J. 2009. A Thermal time model to predict corn poppy (Papaver rhoeas) emergence in cereal fields. Weed Science, 57(6): 660-664. [DOI:10.1614/WS-09-043.1]
21. Kamkar, B., Daneshmand, A.R., Ghooshchi, F., Shiranirad, A.H. and Langeroudi, A.S. 2011. The effects of irrigation regimes and nitrogen rates on some agronomic traits of canola under a semiarid environment. Agricultural Water Management, 98(6): 1005-1012. [DOI:10.1016/j.agwat.2011.01.009]
22. Kamkar, B., Jami Al-Ahmadi, M. and Mahdavi-Damghani, A. 2011. Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds germinate using non-linear regression models. Industrial Crops and Products, 35(1): 192-198. [DOI:10.1016/j.indcrop.2011.06.033]
23. Lack A.J. and Evans, D.E. 2003. Biologia roślin. Cykl- krótkie wykłady. Wydawnictwo Naukowe PWN, Warszawa.
24. Li, Q., Tan, J., Li, W., Yuan, G., Du, L., Ma, S. and Wang, J. 2015. Effects of environmental factors on seed germination and emergence of Japanese brome (Bromus japonicus). Weed Science, 63: 641-649. [DOI:10.1614/WS-D-14-00131.1]
25. Linh, N.T.N. and Halas, V. 2016. Buckwheat as valuable feed and food resource. Nova Journal of Medical and Biological Sciences, 3(4): 1-6. [DOI:10.20286/nova-jmbs-030459]
26. Montgomery, J. 2009. The Potential of Fenugreek (Trigonella foenum-graecum) as a forage for dairy herds in central Alberta. Agriculture and Agri-Food Canada; Agricultural, Food and Nutritional Science. M.Sc. thesis, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Acharya, Surya, 178p.
27. Patade, V.Y., Maya, K. and Zakwan, A. 2011. Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Research Journal of Seed Science, 4(3): 125 -136. [DOI:10.3923/rjss.2011.125.136]
28. Piper, E.L., Boote, K.J., Jones, J.W. and Grimm, S.S. 1996. Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Science, 36(6): 1606-1614. [DOI:10.2135/cropsci1996.0011183X003600060033x]
29. Portoosi, M., Rash Mohasel, M. and Izadi, E. 2008. Germination characteristics and cardinal temperatures of lambsquarter, purselane and crabgrass. Iranian Journal of Field Crops Research, 6(2): 205-261. [In Persian with English Summary].
30. Qiu, J., Bai, Y., Colman, B. and Romo, J.T. 2007. Using thermal time models to predict seedling emergence of orchardgrass (Dactylis glomerata L.) under alternating temperature regimes. Seed Science Research, 16(4): 261-271. [DOI:10.1017/SSR2006258]
31. Shafii, B. and Price, W.J. 2001. Estimation of cardinal temperatures in germination data analysis. Journal of Agricultural, Biological and Environmental Statistics, 6: 356-366. [DOI:10.1198/108571101317096569]
32. Soltani, A., Oveisi, M., Soltani, A., Galeshi, S., Ghaderifar, F. and Zeinali, E. 2014. affected by temperature and water Seed germination modeling of volunteer canola as potential: hydrothermal time model. Weed Research Jouranl, 6(1): 23-38.
33. Soltani, A., Robertson, M.J., Torabi, B., Yousefi-Daz, M. and Sarparast, R. 2006. Modelling seedling emergence in Chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology, 138(1): 156-167. [DOI:10.1016/j.agrformet.2006.04.004]
34. Soltani, E., Galeshi, S., Kamkar, B. and Akramghaderi, F. 2008. Modeling seed aging effects on the response of germination to temperature in wheat. Seed Science and Biotechnology, 2(1): 32-36.
35. Wang, J., Ferrell, J., MacDonald, G. and Sellers, B. 2009. Factors Affecting Seed Germination of Cadillo (Urena lobata). Weed Science, 57: 31-35. [DOI:10.1614/WS-08-092.1]
36. Wei, S., Zhang, C., Li, X., Cui, H., Huang, H., Sui, B., Meng, Q. and Zhang, H. 2009. Factors affecting Buffalobur (Solanum rostratum) seed germination and seedling emergence. Weed Science, 57: 521-525. [DOI:10.1614/WE-09-054.1]
37. Wu, X., Li, J., Xu, H. and Dong, L. 2015. Factors affecting seed germination and seedling emergence of Asia Minor bluegrass (Polypogon fugax). Weed Science, 63: 440-447. [DOI:10.1614/WS-D-14-00093.1]
38. Yin, X., Kropff, M.J., Mclaren, G. and Visperas, R.M. 1995. A nonlinear model for crop development as a function of temperature. Agricultural and Forest Meteorology, 77(1): 1-16. [DOI:10.1016/0168-1923(95)02236-Q]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb

This work is licensed under a Creative Commons Attribution 4.0 International License.