Volume 3, Issue 1 ((Spring and Summer) 2016)                   Iranian J. Seed Res. 2016, 3(1): 15-26 | Back to browse issues page


XML Persian Abstract Print


Professor of Forestry, Faculty of Desert Studies, Semnan University, Semnan, Iran , kartooli58@profs.semnan.ac.ir
Abstract:   (39429 Views)

In this study, the effect of different doses of gamma radiation was investigated on seed germination factors of Caper species. Gamma irradiation was performed using a cobalt-60 radiation with the radiation speed of 0.018 Gray/second and five doses of gamma radiation (0, 20, 40, 60 and 100 Gray) in a completely randomized design with 4 replication. The results showed that gamma radiation significantly affects some of the seed germination factors. So that the 100 Gray treatment increased the germination percentage up to 43.2% as compared with other treatments. The average time of germination in seeds treated with gamma decreased 0.91 days rather than control. Length of the stem let in gamma treatments increased 62.3% rather than control; so that the fresh and dry weight of stem let at 100 Gray were respectively increased 171.4 and 27.3% in comparison with the control. The fresh and dry weight of rootlets were respectively increased 417.9% and 668% rather than the control one. Seed vigor at 100 Gray was 32.3% higher than the control. From among the different studied doses, 100 Gray showed the highest influence on the seed germination and physiology although the induced changes were in low amounts. This study revealed that gamma irradiation has not major influences on improving seed germination characteristics of Caper shrubs.

Full-Text [PDF 200 kb]   (3934 Downloads)    
Type of Study: Applicable | Subject: Seed Physiology
Received: 2015/02/4 | Revised: 2017/12/27 | Accepted: 2015/07/1 | ePublished: 2016/11/9

References
1. Alikamanoglu, S., Yaycili, O., and Sen, A. 2011. Effect of gamma radiation on growth factors, biochemical parameters, and accumulation of trace elements in soybean plants (Glycine max L. Merrill). Biological Trace Element Research, 141(1-3): 283-293. [DOI:10.1007/s12011-010-8709-y] [PMID]
2.  Badr, A., Ahmed, H.I.S., Hamouda, M., Halawa, M., and Elhiti, M.A. 2014. Variation in growth, yield and molecular genetic diversity of m2 plants of cowpea following exposure to gamma radiation. Life Science Journal, 11(8): 10-19.
3. Bhosale, R.S., and More, A.D. 2014. Effect of Gamma radiation on Seed Germination, Seedling Height and Seedling Injury in Withania somnifera (L.) Dunal. International Journal of Life Sciences, 2(3): 226-228.
4. Biradar, K.S., Salimath, P.M., and Ravikumar, R.L. 2010. Genetic variability for seedling vigour, yield and yield Components in local germplasm collections of Greengram (Vigna radiata (L.) wilczek). Kamataka Journal of Agricultural Sciences, 20(3): 608-609.
5. Borzouei, A., Kafi, M., Khazaei, H., Naseriyan, B., and Majdabadi, A. 2010. Effects of gamma radiation on germination and physiological aspects of wheat (Triticum aestivum L.) seedlings. Pakistan Journal of Botany, 42(4): 2281-2290.
6. Brahmi, I., Mabrouk, Y., Charaabi, K., Delavault, P., Simier, P., and Belhadj, O. 2014. Induced mutagenesis through gamma radiation in chickpea (Cicer arietinum L.): developmental changes and improved resistance to the parasitic weed Orobanche foetida Poir. International Journal, 2(11): 670-684.
7.  Chung, B.Y., Lee, Y.B., Baek, M.H., Kim, J.H., Wi, S.G., and Kim, S.J. 2006. Effect of low does gamma-irradiation on production of shikonin derivatives in callus cultures of Lithospermum erythrorhizon S. Radiation Physics and Chemistry, 75(9): 1018-1023. [DOI:10.1016/j.radphyschem.2005.11.001]
8.  Hameed, A., Shah, T.M., Atta, B.M., Haq, M.A., and Sayed, H.I.N.A. 2008. Gamma irradiation effects on seed germination and growth, protein content, peroxidase and protease activity, lipid peroxidation in desi and kabulin chickpea. Pakistan Journal of Botany, 40(3): 1033-1041.
9.  ISTA. 2009. International rules for seed testing. International Seed Testing Association (ISTA).
10. Kafi, M. 2013. Biochemical response of two wheat cultivars (Triticum aestivum L.) to gamma radiation. Pakistan Journal of Botany, 45: 473-477.
11.  Khan, M.M., Din, R., Qasim, M., Jehan, S., and Iqbal, M.M. 2003. Induced mutability studies for yield and yield related characters in three wheat (Triticum aestivum L.) varieties. Asian Journal of Plant Sciences, 2(17-24): 1183-1187.
12. Kim, J.H., Chung, B.Y., Kim, J.S., and Wi, S.G. 2005. Effects of in Planta gamma irradiation on growth, photosynthesis, and antioxidative capacity of red pepper (Capsicum annuum L.) plants. Journal of Plant Biology, 48(1): 47-56. [DOI:10.1007/BF03030564]
13. Kulkarni, M.G., Street, R.A., and Staden, J.V. 2007. Germination and seedling growth requirements for propagation of Diosscorea dregeana (Kunth) Dur. and Schinz Atuberous medicinal plant. South African Journal of Botany, 73(1): 131-137. [DOI:10.1016/j.sajb.2006.09.002]
14.  Maity, J.P., Mishra, D., Chakraborty, A., Saha, A., Santra, S.C., and Chanda, S. 2005. Modulation of some quantitative and qualitative characteristics in rice (Oryza sativa L.) and mung (Phaseolus mungo L.) by ionizing radiation. Radiation Physics and Chemistry, 74(5): 391-394. [DOI:10.1016/j.radphyschem.2004.08.005]
15.  Majeed, A., and Muhammad, Z. 2010. Gamma irradiation effects on some growth parameters of Lepidium sativum L. World Journal of Fungal and Plant Biology, 1(1): 8-11.
16.  Marcu, D., Damian, G., Cosma, C., and Cristea, V. 2013. Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays). Journal of Biological Physics, 39(4): 625-634. [DOI:10.1007/s10867-013-9322-z] [PMID] [PMCID]
17. Melki, M., and Dahmani, T.H. 2009. Gamma Irradiation Effects on Durum Wheat (Triticum durum Desf.). Pakistan Journal of Biological Sciences, 12(23): 1531-1534. [DOI:10.3923/pjbs.2009.1531.1534] [PMID]
18.  Misra, P., Datta, S.K., and Chakrabarty, D. 2003. Mutation in flower colour and shape of Chrysanthemum morifolium induced by gamma radiation. Biologia Plantarum, 47(1): 153-156. [DOI:10.1023/A:1027365822769]
19. Mohajer, S., Mat Taha, R., Lay, M.M., Khorasani Esmaeili, A., and Khalili, M. 2014. Stimulatory Effects of Gamma irradiation on phytochemical properties, mitoti behaviour, and nutritional composition of sainfoin (Onobrychis viciifolia Scop.). The Scientific World Journal, 2014: 1-9. https://doi.org/10.1155/2014/680356 [DOI:10.1155/2014/854093] [PMID] [PMCID]
20.  Navarrete, M.H., Carrera, P., de Miguel, M., and de la Torre, C. 1997. A fast comet assay variant for solid tissue cells. The assessment of DNA damage in higher plants. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 389(2): 271-277. [DOI:10.1016/S1383-5718(96)00157-X]
21.  Nepal, S., Ojha, B.R., Meador, A.S., Gaire, S.P., and Shilpakar, C. 2014. Effect of gamma rays on germination and photosynthetic pigments of maize (Zea mays L.) inbreds. International Journal of Research, 1(5): 511-525.
22. Olmez, Z., Yahyaoglu, Z., and Ucler, A.O. 2004. Effects of H2S04, KNO3 and GAS treatments on germination of cap (Capparis ovata Desf.) seeds. Pakistan Journal of Biological Sciences, 7(6): 879-882. [DOI:10.3923/pjbs.2004.879.882]
23.  Panwar, P., and Bhardwaj, S.D. 2005. Handbook of practical forestry, Agro biosystem (India), 191 p. Sakcali, M.S., Bahadir, H., and Ozturk, M. 2008. Eco-physiology of Capparis spinosa L. A plant suitable for combating desertification. Pakistan Journal of Botany, 40(4): 1481-1486.
24.  Thapa, C.B. 2004. Effect of acute exposure of gamma rays on seed germination and seedling growth of Pinus kesiya Gord and P. wallichiana AB Jacks. Our Nature, 2(1): 13-17.
25.  Vasilenko, A., and Sidorenko, P.G. 1996. Alterations in adenylate ratios in plant cells after accelerated ion irradiation. Advances in Space Research, 18(1): 59-62. [DOI:10.1016/0273-1177(95)00791-C]
26. Zaka, R., Chenal, C., and Misset, M.T. 2004. Effects of low doses of short-term gamma irradiation on growth and development through two generations of Pisum sativum. Science of the Total Environment, 320(2): 121-129. [DOI:10.1016/j.scitotenv.2003.08.010] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.