1. Abbasi Khalaki, M., Ghorbani, A., and Moameri, M. 2016. Effects of silica and silver nanoparticles on seed germination traits of Thymus kotschyanus in laboratory conditions. Journal of Rangeland Science, 6(3): 221-231.
2. Agrawal, R. 2003. Seed Technology, Published Company PVT. LTD. New Delhi. India.
3. AL-Kaisi W.A., Muhsen T.A.A., and Hamed, A.S. 2012. Effect of mycorrhiza (Glomus mosseae) and superphosphate on physiological characters of Hordeum vulgare. Journal of the College of Basic Education, 18: 765-784.
4. Asilbekova, D.T., Ulchenko, N.T., Rakhimova, N.K., Nigmatullaev, A.M., and Glushenkova, A.I. 2005. Seed lipids from Crotalaria alata and Guizotia abyssinica. Chemistry of Natural Compounds, 41: 596-597. [
DOI:10.1007/s10600-005-0217-5]
5. Azimi, R., Heshmati, Gh., and Kavandi Habib, R. 2016. Evaluation of SiO2 nanoparticle effects on seed germination in Astragalus squarrosus. Journal of Rangeland Science, 6(2): 135-143.
6. Azimi, R., Jankju Borzelabad, M., Feizi, H., and Azimi, A. 2014. Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Polish Journal of Chemical Technology, 16(3): 25-29. [
DOI:10.2478/pjct-2014-0045]
7. Bhat, J.G., and Murth. H.N. 2008. Haploid plant regeneration from unpollinated ovule cultures of Niger (Guizotia abyssinica (L. f.) Cass.). Russian Journal of Plant Physiology, 55: 241-245. [
DOI:10.1134/S1021443708020118]
8. Callebaut, A., Hendrickx, G., Voets, A.M., and Motte, J.C. 1990. Anthocyanins in cell cultures of Aiuga reptans. Phytochem, 29(7): 2153-2158. [
DOI:10.1016/0031-9422(90)83027-X]
9. Chen, G., Qiu, J., Liu, Y., Jiang, R., and Cai, S. 2015. Carbon nanoparticles act as contaminant carriers and translocate within plants. Scientific Reports, 5:1-9.
10. Crabtree, R.H. 1998. A new type of hydrogen bond. Science, 282: 2000-2001. [
DOI:10.1126/science.282.5396.2000]
11. Dimkpa, C.O., McLean, J.E., Latta, D.E., Manango, E., Britt, D.W., Johnson, W.P., Boyanov, M.I., and Anderson, A.J. 2012. CuO and ZnO nanoparticles; phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14: 1-15. [
DOI:10.1007/s11051-012-1125-9]
12. Feizi, H., Ramezani Moghadam, P., and Fotovat, A. 2011. Wheat seed reaction to different concentrations of titanium dioxide nanoparticles compared to non-nano particles. The 2nd National Conference on Seed Science and Technology, Islamic Azad University, Mashhad Branch. Iran. [In Persian with English Summary].
13. Ghodak, G., Deuk Seo, Y., Sung and Lee, D. 2011. Hazardous phytotoxic nature of cobalt and zinc oxid nanoparticles assessed using Allium cepa. Journal of Hazard Mater, 186(1): 952-955. [
DOI:10.1016/j.jhazmat.2010.11.018] [
PMID]
14. Haghighi, M., Afifipour, Z., and Mozafarian, M. 2012. The effect of N-Si on tomato seed germination under salinity levels. Journal of Biological and Environmental Science, 6(16): 87-90.
15. Haghighi, M., and Pessarakli, M. 2013. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae, 161: 111-117. [
DOI:10.1016/j.scienta.2013.06.034]
16. Hatami, M., Ghorbanpour, M., and Salehiarjomand, H. 2014. Nano-anatase TiO2 modulates the germination behavior and seedling vigority of some commercially important medicinal and aromatic plants. Journal of Environment Biological, 8(22): 53-59.
17. Heldt, H.W., and Piechull, B. 2011. Phenylpropanoids comprise a multitude of plant secondary metabolites and cell wall components, Plant Biochemistry, 4: 446-447. [
DOI:10.1016/B978-0-12-384986-1.00018-1]
18. Helland, A., Wick, P., Koehlar, A., Schmid, K., and Som, C. 2007. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environmental Health Perspectives, 115(8): 1125-1131. [
DOI:10.1289/ehp.9652] [
PMID] [
PMCID]
19. Hunter E.A., Glasbey C.A., and Naylor, R.E. 1984. The analysis of data from germination tests. Journal of Agriculture Science, 102: 207-213. [
DOI:10.1017/S0021859600041642]
20. Kalteh, M., Alipour, Z.T., Ashraf, Sh., Marashi Aliabadi, M., and Falah Noosratabadi, A.R. 2014. Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress, Journal of Chemical Health Risks, 4(3): 49-55.
21. Kenanakis, G., and Katsarakis, N. 2014. Chemically grown TiO2 on glass with superior photocatalytic properties. Journal of Environmental Chemical Engineering, 2: 1748-1775. [
DOI:10.1016/j.jece.2014.07.015]
22. Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li Z., and Watanabe, F. 2009. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3(10): 3221-3227. [
DOI:10.1021/nn900887m] [
PMID]
23. Kottegoda, N., Mmunaweera, L., Madusanka, N., and Karunaratne, V. 2011. A green slow release fertilizer composition based on urea- modified hydroxyapatite nanoparticles encapsulated wood. Current Science, 101: 43-78.
24. Kuai, J., Sun, Y., Guo, C., Zhao, L., Zuo, Q., WU, J., and Zhou, G. 2017. Root-apphied silicon the early bud stage increases the rapeseed yield and optimizes the mechanical harvesting characteristics. Field Crops Research, 200: 88-97. [
DOI:10.1016/j.fcr.2016.10.007]
25. Kumar P., Pirjola L., Ketzel M.M., and Harrison R. 2013. Nanoparticle emissions from 11 non-vehicle exhaust sources – a review. Atmospheric Environment, 67: 252–277. [
DOI:10.1016/j.atmosenv.2012.11.011]
26. Liang, Y., Sun, W., Zhu Y.G., and Christie, P. 2007. Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants, a review. Environmental Pollution, 147(2): 422-428. [
DOI:10.1016/j.envpol.2006.06.008] [
PMID]
27. Lu, C.M., Zhang, C.Y., Wen, J.Q., Wu, G.R., and Tao M.X. 2002. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and is mechanism, Soybean Science, 21(3): 168-172.
28. Lukacova, Z., Svubova, R., Kohanova, J., and Lux, A. 2013. Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. Plant Growth Regulation, 70: 89-103. [
DOI:10.1007/s10725-012-9781-4]
29. Mahmoodzadeh, H., Nabavi, M., and Kashefi, H. 2013. Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus L.). Journal of Ornamental Plants (Journal of Ornamental and Horticultural Plants), 3(1): 25-32.
30. Maksymiec, W. 2007. Signaling responses in plant to heavy metal stress. Acta Physiologiae Plantarum, 29: 177-187. [
DOI:10.1007/s11738-007-0036-3]
31. Nazar Aliyan, S., Majd, A., Ayeriyan, S., Ghahramani Nezhad, F., Najafi, F., and Gregor, M. 2016. Effect of silica and silica nanoparticles on the germination of seeds and growth of fennel plants (Trigonella foenum-graecum L.). Journal of Evolutionary Biology, 3: 53-62.
32. Nel, A., Xia, T., Madler, L., and Li, N. 2006. Toxic potential of materials at the nano level. Science Magazine, 311: 622-627.
33. Noroozi, M., Amoo Aghayi, R., and Noroozi, S. 2012. Evaluation of germination ability of soybean seeds using multi-wall carbon nanotubes. Defective defense in the agricultural sector. Qeshm Island. Civil Defense. [In Persian with English Summary].
34. Noroozi, S. 2013. The effects of nano-silvers, zinc and multi wall carbon nanotube on nodulation, growth, yield and components of yield of faba bean (Vicia faba L.), Shahrekord University, Iran. [In Persian with English Summary].
35. Rahimi, M. 2015. Effect of some nanoparticles on seed germination of hulled and hulless barley varieties (Hordeum vulgare L.), Shahrekord University, Iran. [In Persian with English Summary].
36. Raskar, S., and Laware, S.L. 2013. Effect of titanium dioxide nano particles on seed germination and germination indices in onion. Plant Sciences Feed, 3(9): 103-107.
37. Roohizadeh, G., Majd, A., and Arbabian, S. 2015. The effect of sodium silicate and silica nanoparticles on seed germination and growth in the Vicia faba L., Tropical Plant Research, 2(2): 85-89.
38. Scott S.J., Jones R.A., and Williams W.A. 1984. Review of data analysis methods for seed germination. Crop Science, 24: 1192-1199. [
DOI:10.2135/cropsci1984.0011183X002400060043x]
39. Siddiqui, M.H., Al- Whaibi, M., Firoz, M., Y. and Al-Khaishany, M.Y. 2015. Nanoparticles and Their Impact on Plants Nanotechnology and Plant Science, 303 p.
40. Siddiqui, M.H., and Al-Whaibi, M. 2014. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seed Mill). Journal of Biological Sciences, 21(1): 13-17. [
DOI:10.1016/j.sjbs.2013.04.005]
41. Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Prabu, P., Rajendran, V., and Kannan, N. 2012. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. Journal of Nanoparticles Research, 14: 1294-1296. [
DOI:10.1007/s11051-012-1294-6]
42. Tadayon, M.R., Falah, S.A., Fadaei Tehrani, A.A., and Norouzi, S. 2013. Effects of multi wall carbon nanotube and nanosilver on some physiological and morphological traits of faba bean (Vicia faba L.). Journal of Plant Process and Function, 2: 61-72. [In Persian with English Summary].
43. Tiwari, D. K., Dasqupta-Schubert, N., Villasenor Cendejas, L.M., Villages, J., Carreto Montoya, L., Borjas Garcia, S.E. 2014. Interfacing carbon nanotubes (CNT) with plants: Enhancements of growth, water and ionic nutrient uptake in maize (Zea mays) and implication for nano-agriculture. Applied Nanoscience, 4: 577-591. [
DOI:10.1007/s13204-013-0236-7]
44. Wang, X., Wei, Z., Liu, D., and Zhao, G. 2011. Effects of NaCl and silicon on activities of antioxidative enzymes in roots, shoots and leaves of alfalfa. African Journal of Biotechnology, 10: 545- 549.
45. Wang, X.D., Ou-yang, C., Fan, Z., Gao, S., Chen, F., and Tang, L. 2010. Effects of exogenous silicon on seed germination and antioxidant enzyme activities of Momordica charantia under salt stress. Journal of Animal and Plant Science, 6: 700-708.
46. Yang, F.S., You, W.J., Liu, C., Gao, F.Q., and Yang, P. 2006. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing Spinach. Biological Trace Element Research, 110: 179- 190. [
DOI:10.1385/BTER:110:2:179]
47. Zhang, L., Hong, F. Lu, S., and Liu, C. 2005. Effects of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 105: 83-91. [
DOI:10.1385/BTER:104:1:083]
48. Zhu, H., Han, J., Xiao, J.Q., and Jin, Y. 2008. Uptake, translocation and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 10: 713–717. [
DOI:10.1039/b805998e] [
PMID]
49. Zhu, Y., and Gong, H. 2014. Beneficial effect of silicon on salt and drought tolerance in plants. Agronomy fir Sustainable Development, 34: 455-472.