اثر میدان‌های مغناطیسی بر جوانه‌زنی بذر و رشد گیاهچه کنجد

(*Sesamum indicum L.*)

مریم جنابی‌زاده قرویتی، احمد نظامی، حمیدردضا خرازی، حسن فیضی، مرتفی گلدانی

1 دانشجویی دکتری فیزیولوژی گیاهان زراعی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
2 استادان گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه فردوسی مشهد
3 استادیار دانشگاه تربیت حیدری

*پست الکترونیک توبنده مسئول:
nezami@um.ac.ir

(تاریخ دریافت: ۱۳۸۳/۱۱/۱۰؛ تاریخ پذیرش: ۱۳۹۴/۵/۱۰)

چکیده

برای مینگ بذر توسط میدان‌های مغناطیسی (مگنتو پراپاینگ) به عنوان راهکاری اکولوژیکی، مؤثر و ارزان قیمت برای بهبود خصوصیات جوانه‌زنی و سبز شدن گیاهان مطرح است. به منظور بررسی رفتار جوانه‌زنی کنجد تحت تأثیر میدان‌های مغناطیسی، آزمایش در سال ۱۳۹۳ به صورت طرح کاملاً تصادفی با ۲۲ تیمار (عدم قرارگیری در معبر میدان مغناطیسی (شاهد) و ۲۱ تیمار مگنتو پراپاینگ) و با سه تکرار در دانشگاه کشاورزی دانشگاه فردوسی مشهد اجرا شد. بذرها از کنجد به صورت توده یک کیسه پلاستیکی نازک قرار گرفته و سپس توسط میدان‌های مغناطیسی با شدت (۲۵، ۷۵، ۱۵۰ و ۲۰۰ میلی قوس،) و زمان‌های قرارگیری مختلف (۱۰، ۲۰، ۴۰ و ۶۰ دقیقه برای هر شدت) تیمار شدند. به منظور بررسی خصوصیات جوانه‌زنی کنجد تحت تأثیر میدان‌های مغناطیسی دانه‌ای از نوارهای مغناطیسی با قدرت ۳ میلی قوس در زیر هر بتری در طول مدت آزمایش استفاده شد. نتایج نشان داد که میدان‌های مغناطیسی اثر مشخصی بر سرعت جوانه‌زنی نسبت به تیمار شاهد داشتند. در این آزمایش بیشترین ترویج ریشه طول، گیاهچه و نیز شاخه طولین بیش از بقیه داشتند. طول‌های بیش از ۳۰ میلی‌متر، وزن بیش از ۲ میلی‌گرم و میزان اوریجین‌گرایی بیش از ۱۵ میلی‌گرم و درصد اوریجین‌گرایی بیش از ۲۰ درصد بود. در جهت‌بندی تیمارها نشان داد که قرار گرفتن بذرها به مدت یک ساعت در معبر میدان‌یا با شدت ۱۵۰ میلی‌قرس و نیز ۱۰ دقیقه در معبر ۱۵ میلی‌قرس تیمار زنده به نتایجی را به دنبال دارد.

واژه‌های کلیدی: ریشه‌چه، ساقه‌چه، سرعت جوانه‌زنی، شاخه، بیش از گیاهچه، مگنتو پراپاینگ

مقدمه

کنجد یکی از برر و ریزترین دانه‌ها (۴۶-۷۴ درصد) در میان دانه‌های روانه‌تر محسوب می‌شود (ازون ۱ و همکاران، ۲۰۰۰). مجموع چربی و پروتئینی دانه کنجد

1 Uzun
لالعی زاده قزوینی و همکاران: اثر میدان‌های مغناطیسی بر جوانی‌زی بذر و رشد گیاهی کندج

حتی به سمت یک گیاه فراورم شده، پیش فزونه است که دلیل آن عمدکرد کم بذر و رقابت شدید آن به سایر دانه‌های روشنی شعری. افتاک‌داران و بادآزمایی بوده است (زون و همکاران، 2002). یکی از عوامل دستیابی به عملکرد بالا در گیاهان رازی افزایش بذر و سرعت جوانی‌زی بذر است. استقرار گیاهی یک حاصل از بذر حیت کشت است. به‌طور طبیعی هر چه سرعت جوانی‌زی و درصد بذرهای جوانی‌زده در مزرعه بیشتر باشد انتظار می‌رود تنظیم نزدیک تر و آب و انعکاس گیاهی بهتر خواهند بود (فاوی і همکاران، 2002).

امروزه برای بذر بعنوان یک تکنیک مؤثر جهت بهبود جوانی‌زی گیاهان بیرونی در شرایطی ناشی مطرح است (آرش و فولاد، 2005). برای اینکه بذر بهتر کوتاهی‌شده و ژانده و حفاظت از بذرها از تنفس زندگی و غیرنیزده در محلی به خریداری استقراض گیاهی می‌شود. همچنین برای نگهداری بیشتر، بهبود یک تکنیک مؤثر بذر است و استقرار گیاهی بهبود عمیق‌تری ایجاد می‌کند. می‌تواند همچنین بهبود بذرها و اثر آن در افزایش بذر و سرعت جوانی‌زی در مزرعه و بهبود قرار گرفتن نشان دهنده اثرات این تکنیک است. برای اینکه قرار گرفتن بیشتر رشد بذرها و افزایش بزرگی این مسئله سپس افزایشی است که برای برداشت بهتر نگهداری بوده و در سال‌های اخیر مورد توجه محققان قرار گرفته است. برای اینکه جوانی‌زی بهبود شود، باید در ضایعات کمیکی و از سطح خشک می‌باشد بهبود جوانی‌زی و استقرار گیاهی بهبود عمیق‌تری حاصل می‌کند. در این مقاله به آموزش و آموزشی که به خریداری این تکنیک است (درنا و همکاران، 2010) با استفاده پژوهشی بشر زبان بیروزه کرد. استفاده از این پژوهش برای اولین بار در سال‌های اخیر بهبود قرار گرفتن است (درنا و همکاران، 2010).

متن مطلق‌تر از مقاله: گیاهان می‌توانند این مسئله را می‌کنند. با این نظریه‌ها در تحقیقاتی که انجام شده‌اند، بیشتر این نظریه و فلسفه‌ای که اثراتی را می‌تواند از سطح خشک می‌باشد بهبود جوانی‌زی و استقرار گیاهی بهبود عمیق‌تری حاصل می‌کند. در این مقاله به آموزش و آموزشی که به خریداری این تکنیک است (درنا و همکاران، 2010).

8 Vashisth and Nagarajan
9 Martinez
10 Mean Germination Time
11 Podlesny
12 Samani
13 Magneto-priming
14 Yaeici and Alikamangola
15 Reina and Pascual
16 Ahmad

1 Orphan crop
2 Foti
3 Ashraf and Foolad
4 Basra
5 Dorma
6 Bilalis
7 Alexander and Doijode
فیزیولوژی دانشکده کشاورزی دانشگاه فردوسی مشهد
توجهات را به خوب جلب کردن سازوکار جفت
رادیکال و رژیم‌هایی غیر بسیاری از این رژیم‌ها
می‌باشد. این رژیم‌ها بر سه‌گانه‌ای (یک
میزان مایعی‌های مختلف) در مقیاس
مایعی قطع‌های غیر هم‌نام (یک قطعه S
و یک قطعه N) در مقابل
هم‌کارگری هستند.

3 دستگاه ایجاد کننده میدان مغناطیسی شامل یک جفت از این
فوریت آستات گزارش کرده که قابلیت تنظیم فصله از می‌باشد.
دو آنها
طرحی در دستگاه جابزی شده‌اند که هم‌کارگر را به خوب می‌گیرد
یعنی قطع‌های غیر هم‌نام (یک قطعه S و یک قطعه N)
هم‌کارگری هستند.

1 Radical-pair
2 Ion Cyclotron Resonance
3 Galland and Pazur
4 Liboff
5 Ferromagnetic
6 Diamagnetic
میدان مغناطیسی گرفت به این صورت که بعد از مقایسه میانگین‌ها توسط آزمون دانک، به حرف a رتبه 1، حرف b رتبه 1/2، حرف c رتبه 1/3، abcde، حرف abcde، 1/3 حرف ab، حرف c رتبه 1/2 و تعلق گرفت و در نهایت رتبها به هم جمع شدند. در این بخش نیاز ویژه رتبه کمتری داشتیم

شکل 1- دسته طراحی شده به جهت ایجاد شده‌ای مختلف درصد جوانزه از طریق رابطه بلجر (1975) و با استفاده از رابطه 1 و معادله 3، بدست آی جوانزه محسوب می‌شود که طول ریشه‌های آنها حداقل یک میلی‌متر باشد (2009).

رازبانه (1)

GP3% = n/N × 100
سرعت جوانزه از رابطه (2) بر طبق روش ماگویر (1962) محاسبه شد.

رازبانه (2)

GR5% = (a/1) + (b-a/2) + (c-b/3) + ….+ (n-n-1/N)
در رابطه فوق، GP نیز درصد جوانزه، bدند آمیخته جوانزه در هر پنی N نیز درصد کل بذرها GR سرعت جوانزه (GR) نیز کشت شده و GR به ترتیب نشان دهنده درصد بذرها جوانزه به n از 1، 2، 3، 4 و 5 روز از شروع بارگیری آنها است.

همچنین شاخص طولی بهینه گیاهی با اساس رابطه عبدالپناه و اندرسون (1973) محاسبه شد (رازبانه 3 و

رازبانه (3)

طول گیاهی (رشته + ساقه) (سانتی‌متر) = درصد جوانزه × شاخص طولی بهینه گیاهی

رازبانه (4)

وزن شکاف گیاهی (ساقه + رشته) (ملی‌گرم) = درصد جوانزه × شاخص وزنی بهینه گیاهی

طول ریشه‌چه، طول ساقه‌چه و گیاهی و نیز وزن خشک آنها بر اساس اندازه‌گیری درصد جوانزه‌ای که در ایجاد کننده میدان مغناطیسی از طریق اعمال 10% نرخ نیکل و اقدام گیاهی، شدت و نوع میدان، مدت زمان بذرها روشن برای ایجاد و سبب آن، می‌شود تا گیاه هونه به مصرف دیقیت، تعداد اثرات ایجاد شده با ترکیب آن کنده میدان مغناطیسی به عمل می‌کند. تحت این شرایط افزایش تعداد ترکیب‌گیری با دیگرگونگی میدان مغناطیسی در دردست و مراحل بعدی رشد گیاه نسبت به دوره جوانزه‌ای بیشتری داشته باشد (دهaho و الخیری، 2009).

7 One Way Anova
8 Tahir and Karim
9 Cakmak
10 Dhawi and Al-Khayri

References
1 Belcher
2 International Seed Testing Association
3 Germination Percentage
4 Maguire
5 Germination Rate
6 Abdul-Baki and Anderson

Downloaded from yujs.yu.ac.ir at 12:42 +0330 on Friday, September 27th 2019 [DOI: 10.29252/yujs.3.1.1]
جدول ۱- تجزیه واریانس محاسبه شده با جوانه‌زایی برای کنندی قرار گرفته در معرض میزان مغناطیسی

<table>
<thead>
<tr>
<th>میانگین محاسبه شده</th>
<th>عنصر آزمایشی</th>
<th>تعداد</th>
<th>نگرش</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV12</td>
<td>SV11</td>
<td>SW</td>
<td>PW</td>
</tr>
<tr>
<td>۱۴۰۴/۰۲</td>
<td>۱۴۰۴/۰۲</td>
<td>۱۴۰۴/۰۲</td>
<td>۱۴۰۴/۰۲</td>
</tr>
<tr>
<td>۱۴۰۴/۰۲/۰۲</td>
<td>۱۴۰۴/۰۲/۰۲</td>
<td>۱۴۰۴/۰۲/۰۲</td>
<td>۱۴۰۴/۰۲/۰۲</td>
</tr>
</tbody>
</table>

جوانه‌زایی با قرار گیری در معرض میزان مغناطیسی نگرش آزمایشی داشت و بیشترین سرعت جوانه‌زایی در میزان ۱۰۰ میلی تیمار به مدت ۲۰ دقیقه به دست آمد (جدول ۱). به لحاظ این صفت اثر تیمارهای میان مغناطیسی با استندان ۷۵ میلی تیمار به مدت ۲۰ دقیقه (روش‌گریکی ۲۰۰۹) در افزایش ۱۱ تیمار را در میزان ۲۰۰۸ سرعت جوانه‌زایی نسبت به شاهد شدن. مغناطیسی ۱۸۰۰ میلی تیمار به مدت ۱۰ دقیقه (روش‌گریکی ۲۰۰۸) میزان بحران عدس را در برابر بینگ با میزان ۲۴۰ میلی تیمار به مدت ۱۰ دقیقه (روش‌گریکی ۲۰۰۸) میزان نشان داد که همه‌ها میزان مغناطیسی در کل بزرگ‌تر از ایاله شده (۱۲۰-۳۰ دقیقه) اثر مثبت طول ریشه و طول کل دانه رسته راهشده و در هر دو شدت ۳۵ و ۵۱ میلی تیمار آزمایشی دارای یافته که بیشینه آن بر عوامل یاد شده در شدت ۲۵ میلی تیمار و خازن زمینی ۶۰ دقیقه مشاهده شد (پوریک اسپرت و همکاران ۱۳۹۱). اما اظهار می‌شود که بهبود رشد طولی ریشه و ساقه‌چه شده. بیشترین تأثیر میزان مغناطیسی بر شاخه‌های متغیر است. در بررسی افضل و همکاران (Tagetes patula L. ۲۰۱۲) دروازه کل جنگری (Lactuca sativa L. ۲۰۱۶) بیشترین تیمارهای میان مغناطیسی بهره‌برداری نیاز بیشتر میلی تیمار به مدت ۲۰ دقیقه و بحث در معرض سرعت جوانه‌زایی بیشترین افزایش در برابر بینگ با میزان ۱۰ میلی تیمار مشاهده شد و این عامل را مشاهده در سرعت جوانه‌زایی پیشنهاد کردند.

محله گروههای دنی ایران/ سال سوم/ شماره اول/ ۱۳۹۵

میتیک ایندم Index

میدان و شابرانی

بانگ و دنگ

۱ Mitotic Index

۲ Afzal

۳ Majd and Shabrami

۴ Pang and Deng
فعالیت زاده فروشی و همکاران: اثر میدان‌های مغناطیسی بر جوانان بی بستر و رشد گیاهی کندج

گندم نیز شاخص طولی به‌نیمه‌گیاهچه در تیمارهای شاهد و میدان مغناطیسی 150 میلی سنتی به مدت 200 دقیقه در گرمترین مقدار بود ولی در سایر تیمارها به‌ویژه تیمار 100 میلی سنتی به مدت 10 دقیقه افزایش معنی‌دار نسبت به شاهد، نشان داد. بر طبق نظارت‌های قابل، همکاران (2012) میدان‌های مغناطیسی اجسام پیوسته را با اسهال‌های غیرعادی، رادکال‌های آزاد، کربستال‌های مانعی یا تغییرات الکترون متحرک تحت تأثیر قرار می‌دهد. به‌لحاظ شیمیایی رادکال‌های آزاد به دلیل واکنش‌های بازی بی‌سروکت و واکنش شده و موجب تغییرات در فرآیندهای فیزیولوژیکی و بیوشیمیایی گانه‌زی بین می‌شوند.

از آموزش پودلی و همکاران (2003) افزایش معنی‌دار محتوای رادکال‌های آزاد در گیاهان نخودفرنگی قرار گرفته در معرض میدان‌های مغناطیسی دیده شد. این امر باعث و جوجه آمدم تغییرات ابدیتی در طی نمو گیاهچه‌ها نظیر تطبیق هیپوکتیل و ریشه‌ها و یا بازیابی افزایش ویگی (بنیه) گیاهچه‌ها شد. در این تحقیق، شاخص وزن نیمه‌گیاهچه که بر اساس وزن گیاهچه و درصد جوانانی اندرازه‌گیری شده بود نیز عوامل شیب به وسیع رشته و گیاهچه (برتر بودن تیمارهای 100 میلی سنتی در 30 دقیقه و 50 میلی سنتی باید 10 دقیقه) داشت (جدول 3). به‌طوری که تیمارهای مزکور به ترتیب منجر به افزایش 13/1 و 10/1 درصدی در شاخص وزن نیمه‌گیاهچه نسبت به تیمار شاهد گردیدند.

شاخص‌های بنیه گیاهچه

شاخص‌های طولی و وزنی بنیه گیاهچه نیز تحت تأثیر میدان‌های مغناطیسی قرار گرفتند و شاخص بنیه گیاهچه یک که بر مبنای طول گیاهچه و درصد جوانانی تعیین می‌شود روند مشابه به طول رشد قرار گرفته و گیاهچه نشان داد. بر اساس گزارشات مورد مطالعه به تیمار 15 میلی سنتی به مدت 150 دقیقه و درصد 75 درصدی نسبت به بستر استفاده در اثر قرار گیری به وسیع رشته و گیاهچه (جدول 3) در بررسی فیزیکی و همکاران (1990) روی

2 Iqbal
3 Podlesny

1 Fischer
جدول ۲- مقایسه میانگین اثر یکپارچگی با میانگی‌های مغناطیسی بر اثر تعدادی از خصوصیات جوامعی کنجد

<table>
<thead>
<tr>
<th>میابن</th>
<th>طول گیاهچه (سانتی‌متر)</th>
<th>طول ساقه‌چه (سانتی‌متر)</th>
<th>سرعت جوامعی (سانتی‌متر/ثانیه)</th>
<th>درصد جوامعی (مئی/ق)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>73</td>
<td>54</td>
<td>126</td>
<td>100</td>
</tr>
<tr>
<td>(تارک)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>هم</td>
<td>62</td>
<td>45</td>
<td>120</td>
<td>90</td>
</tr>
<tr>
<td>(۲۵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/46</td>
<td>55</td>
<td>46</td>
<td>118</td>
<td>90</td>
</tr>
<tr>
<td>(۱۲۵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/47</td>
<td>55</td>
<td>46</td>
<td>118</td>
<td>90</td>
</tr>
<tr>
<td>(۱۲۵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/48</td>
<td>55</td>
<td>46</td>
<td>118</td>
<td>90</td>
</tr>
<tr>
<td>(۱۲۵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/49</td>
<td>55</td>
<td>46</td>
<td>118</td>
<td>90</td>
</tr>
<tr>
<td>(۱۲۵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/50</td>
<td>55</td>
<td>46</td>
<td>118</td>
<td>90</td>
</tr>
<tr>
<td>(۱۲۵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/51</td>
<td>55</td>
<td>46</td>
<td>118</td>
<td>90</td>
</tr>
<tr>
<td>(۱۲۵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/52</td>
<td>55</td>
<td>46</td>
<td>118</td>
<td>90</td>
</tr>
<tr>
<td>(۱۲۵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/53</td>
<td>55</td>
<td>46</td>
<td>118</td>
<td>90</td>
</tr>
<tr>
<td>(۱۲۵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/54</td>
<td>55</td>
<td>46</td>
<td>118</td>
<td>90</td>
</tr>
<tr>
<td>(۱۲۵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/55</td>
<td>55</td>
<td>46</td>
<td>118</td>
<td>90</td>
</tr>
<tr>
<td>(۱۲۵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/56</td>
<td>55</td>
<td>46</td>
<td>118</td>
<td>90</td>
</tr>
<tr>
<td>(۱۲۵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/57</td>
<td>55</td>
<td>46</td>
<td>118</td>
<td>90</td>
</tr>
<tr>
<td>(۱۲۵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/58</td>
<td>55</td>
<td>46</td>
<td>118</td>
<td>90</td>
</tr>
<tr>
<td>(۱۲۵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/59</td>
<td>55</td>
<td>46</td>
<td>118</td>
<td>90</td>
</tr>
<tr>
<td>(۱۲۵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/60</td>
<td>55</td>
<td>46</td>
<td>118</td>
<td>90</td>
</tr>
<tr>
<td>(۱۲۵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* مثل تبلور ۵ اعداد داخل پارتنداران یا‌هنگام در معرض میانگین مغناطیسی بر جنب‌دیگری است میانگین‌هایی با حداکثر یک حرف مشترک در هر ستون اختلاف معنی‌داری در سطح احتمال یک درصد بر اساس آزمون دانک ندارند.

[DOI: 10.29252/yujs.3.1.1]
جدول ۳ - مقایسه میانگین برخی از صفات مربوط به جوانترین کنجه نیم‌شنده با میدان مغناطیسی

<table>
<thead>
<tr>
<th>شاخص وری بینه</th>
<th>شاخص طولی بینه</th>
<th>وزن غیاهه (ملی‌گرم)</th>
<th>وزن ساقه‌ه (ملی‌گرم)</th>
<th>تیمار میدان مغناطیسی (mT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۳۰ a-c</td>
<td>۶۳۱ bc</td>
<td>۳۳۰ a-c</td>
<td>۱/۰ ab</td>
<td>۳۰۰ a-d</td>
</tr>
<tr>
<td>۳۳۰ b-f</td>
<td>۵۳۶ bc</td>
<td>۳۴۰ a-c</td>
<td>۱/۰ a</td>
<td>۳۳۰ cd</td>
</tr>
<tr>
<td>۳۳۱ a-c</td>
<td>۶۴۴ bc</td>
<td>۴۳۱ c-f</td>
<td>۱/۶ ab</td>
<td>۳۳۳ bc</td>
</tr>
<tr>
<td>۳۱۸ a-c</td>
<td>۴۹۹ d-f</td>
<td>۴۳۴ a-c</td>
<td>۱/۰ ab</td>
<td>۳۳۰ d</td>
</tr>
<tr>
<td>۳۱۸ b-d</td>
<td>۴۳۴ bc</td>
<td>۴۳۴ b-d</td>
<td>۱/۰ ab</td>
<td>۴۴۴ b-d</td>
</tr>
<tr>
<td>۲۴۰ b-c</td>
<td>۴۰۴ b-d</td>
<td>۴۱۴ a-c</td>
<td>۱/۰ ab</td>
<td>۴۴۴ b-d</td>
</tr>
<tr>
<td>۲۴۰ d-f</td>
<td>۴۱۴ d-f</td>
<td>۴۱۴ d-f</td>
<td>۱/۰ ab</td>
<td>۴۴۴ b-d</td>
</tr>
<tr>
<td>۱۹۱ c</td>
<td>۴۹۸ d-f</td>
<td>۴۱۴ d-f</td>
<td>۱/۰ ab</td>
<td>۴۴۴ b-d</td>
</tr>
<tr>
<td>۱۹۸ ab</td>
<td>۴۹۹ d-f</td>
<td>۴۱۴ d-f</td>
<td>۱/۰ ab</td>
<td>۴۴۴ b-d</td>
</tr>
<tr>
<td>۲۱۷ a-c</td>
<td>۵۰۰ b-c</td>
<td>۴۱۴ d-f</td>
<td>۱/۰ ab</td>
<td>۴۴۴ b-d</td>
</tr>
<tr>
<td>۲۱۷ b-f</td>
<td>۵۰۰ b-c</td>
<td>۴۱۴ d-f</td>
<td>۱/۰ ab</td>
<td>۴۴۴ b-d</td>
</tr>
<tr>
<td>۲۳۰ a-c</td>
<td>۶۶۶ b-f</td>
<td>۴۳۴ a-c</td>
<td>۱/۰ ab</td>
<td>۴۴۴ b-d</td>
</tr>
<tr>
<td>۲۳۰ b-f</td>
<td>۶۶۶ b-f</td>
<td>۴۳۴ a-c</td>
<td>۱/۰ ab</td>
<td>۴۴۴ b-d</td>
</tr>
<tr>
<td>۲۴۰ a-c</td>
<td>۴۳۴ b-f</td>
<td>۴۳۴ a-c</td>
<td>۱/۴ ab</td>
<td>۴۴۴ b-d</td>
</tr>
<tr>
<td>۲۴۰ b-f</td>
<td>۴۳۴ b-f</td>
<td>۴۳۴ a-c</td>
<td>۱/۴ ab</td>
<td>۴۴۴ b-d</td>
</tr>
<tr>
<td>۳۷۸ a-c</td>
<td>۴۳۴ b-f</td>
<td>۴۳۴ a-c</td>
<td>۱/۴ ab</td>
<td>۴۴۴ b-d</td>
</tr>
<tr>
<td>۳۷۸ b-f</td>
<td>۴۳۴ b-f</td>
<td>۴۳۴ a-c</td>
<td>۱/۴ ab</td>
<td>۴۴۴ b-d</td>
</tr>
<tr>
<td>۴۷۳ a-c</td>
<td>۴۳۴ b-f</td>
<td>۴۳۴ a-c</td>
<td>۱/۴ ab</td>
<td>۴۴۴ b-d</td>
</tr>
<tr>
<td>۴۷۳ b-f</td>
<td>۴۳۴ b-f</td>
<td>۴۳۴ a-c</td>
<td>۱/۴ ab</td>
<td>۴۴۴ b-d</td>
</tr>
<tr>
<td>۴۷۸ a-c</td>
<td>۴۳۴ b-f</td>
<td>۴۳۴ a-c</td>
<td>۱/۴ ab</td>
<td>۴۴۴ b-d</td>
</tr>
<tr>
<td>۴۷۸ b-f</td>
<td>۴۳۴ b-f</td>
<td>۴۳۴ a-c</td>
<td>۱/۴ ab</td>
<td>۴۴۴ b-d</td>
</tr>
</tbody>
</table>

میلی نسلا، *میلی نسلا* و *میلی نسلا* هر سیستم اختلاف معنی‌داری در سطح احتمال ۰.۰۵ را درصد بر اساس آزمون داغن دارد.
جدول 4- رتبه‌بندی نیم‌های مختلف میدان مغناطیسی بر اساس ناتوگرافی مینت آنها روی خصوصیات مستقیماً وابسته به جوانه زنی کنجد.

| رتبه میدان مغناطیسی (mT) | درصد سرعت طلوی گیاه گیاهی | طول گیاهی گیاهی | طول ساقه گیاهی | وزن ساقه گیاهی | وزن گیاهی گیاهی | طول گل‌های گیاهی | وزن گل‌های گیاهی | سطح گل‌های گیاهی | تعداد گل‌های گیاهی | متوسط تعداد گل‌های گیاهی | متوسط وزن گل‌های گیاهی | متوسط طول گل‌های گیاهی | متوسط طول گیاهی گیاهی | متوسط وزن گیاهی گیاهی | متوسط طول ساقه گیاهی | متوسط وزن ساقه گیاهی |
|--------------------------|--------------------------|----------------|--------------|---------------|---------------|----------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|

1- میلی سیال: اعداد داخل پرانتز نشان دهنده میزان فرکانس در معنی میدان مغناطیسی به دقتی است.

2- در بررسی اسحاق و همکاران (2011) روی گیاه در بررسی اسحاق و همکاران (2011) روی گیاه دزت نیز پرآمیگ مغناطیسی منجر به افزایش درصدی شاخه‌ای بینه گیاهی دو (وزن) نسبت به تیمار شاهد شد.

4- در بررسی اسحاق و همکاران (2011) روی گیاه در بررسی اسحاق و همکاران (2011) روی گیاه رتبه‌بندی تیمارها نشان داد که تیمارهای 26 میلی سیال به مدت 10 و 20 دقیقه به مدت 5 میلی سیال به مدت 50 دقیقه و نیز 100 میلی سیال به مدت 20 دقیقه نسبت به تیمار شاهد، میدان مغناطیسی دانه و کلیه تکیبات تیماری دیگر اثرات بهتر بر اکثر خصوصیات جوانه‌زینی که درون دانه و در این بین دو تیمار 25 میلی سیال به مدت 10 دقیقه و نیز 25 میلی سیال به مدت 60 دقیقه از رتبه پایین‌تر تأثیرگذاری بیشتری بر نتایج بودند.
نتیجه‌گیری
قرارگیری بذر‌های کندج در معرض میدان‌های مغناطیسی تأثیر معنی‌داری بر رشد جوانه‌زنی نداشت. اما منجر به تغییرات معنی‌دار و بعضاً مثبت در سرعت جوانه‌زنی طول رشد‌هه طول ساقه‌هه و گیاهیه وزن شاخه رشد‌هه و گیاهیه نیز شاخه‌هه طولی و وزنی بینه گیاهیه شد. به مورد میدان‌های مغناطیسی مستو افزایش سرعت جوانه‌زنی، طول گیاهیه وزن شاخه گیاهیه و شاخه‌های بینه گیاهیه در این آزمایشات بانست.

سفارش‌هایی
بودجه این تحقیق از محل اعتبارات معاونت پژوهشی دانشکده کشاورزی دانشگاه فردوسی مشهد تأمین شده است که بدن‌ویسه سیاستگزاری می‌گردد.

منابع
پوراکری، ل. اسید سامانی، م. و اشرفی، ر. 1391. اثر میدان‌های مغناطیسی بر جوانه‌زنی، شاخه‌های رشد و فعالیت برمیزی (Nigella sativa L.) زیست‌شناختی گیاهی (13): 129-134.

Sesamum indicum L. (3) 443-456.

دری، ترکمانی، م. و کاراییان، ز. 1386. بررسی خصوصیات فیزیکی و شیمیایی میوه‌های زیرازمان. مجله زیست‌شناختی ایران، (40): 477-487.

رجب بیگی، ا. قدیما، ف. و عقیل‌نژادی، پ. 1397. مطالعه افزایش سرعت‌های جدا کردن گیاه جعفری به میدان‌های مغناطیسی است. زیست‌شناختی گیاهی (15): 69-86.

سبرندگان، غ. توکلی، ج. و قربانی، ع. 1387. بررسی مقاومت بذرها به مختلف معادن دیم در مرحله جوانه‌زنی. مجموعه مقالات و نتایج اولین کنفرانس تحقیقات و بررسی مسائل دیم در ایران، دانشگاه فردوسی مشهد. 54-60.

فیضی، ح. رضوانی، مقدی، ب. کوچکی، ع. و شاه طهماسبی، ن. و فتوحی، ا. 1390. تأثیرات بذری و زمان‌های مختلف میدان مغناطیسی بر رفتار جوانه‌زنی و رشد گیاهیه گندم (Triticum aestivum L.) (شریعه بوش‌شناختی کشاورزی، (46): 339-429.

429-430

گالشی، س.، فرخزد، س. و سلطانی، ا. و رضائی، ج. 1385. ارزیابی واکنش چهل ژنتیکی بینه به تنش خشکی در مرحله جوانه‌زنی. مجله علوم کشاورزی و منابع طبیعی، (3): 8-1.

Effect of Magnetic Fields on Seed Germination and Seedling Growth of Sesame (Sesamum indicum L.)

Maryam Janalizadeh¹, Ahmad Nezami²*, Hamid Reza Khazaie², Hassan Feizi³, Morteza Goldani²

¹ Ph.D. Student in Crop Physiology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
² Professors in Department of Agronomy and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
³ Assistant Professor in Torbat-e-Heydariye University, Torbat-e-Heydariye, Iran

*Corresponding author, E-mail address: nezami@um.ac.ir

(Received: 27.01.2015 ; Accepted: 01.08.2015)

Abstract

Priming of seeds by magnetic fields (magneto priming) has been proposed as an ecological, useful and low-priced method for improving seed germination and plant emergence. In order to evaluate the germination behavior of sesame seeds affected by magnetic fields, an experiment was conducted as a completely randomized design with 22 treatments (non exposure to magnetic fields (control) and 21 magneto priming treatments) with three replications at college of agriculture, Ferdowsi University of Mashhad in 2014. Seeds of sesame put into a plastic bag bulky and were treated with different intensities of magnetic fields (25, 50, 75 and 100 mili Tesla (mT)) for different times (10, 20, 30, 60 and 120 minutes). In order to evaluate the germination traits of sesame under constant magnetic field conditions, magnetic tapes with three mT strength were used under each Petri dish throughout the experiment. Results showed that the magnetic fields had no significant effects on final germination percentage. Priming of seeds with magnetic fields in 50 mT strength for 20 minutes led to increment of germination rate compared to control treatment but all levels of 100mT treatment caused reduction in germination rate than control. The most radicle length, seedling length and seedling vigor length index belong to 75 mT at 60 minutes treatment and the most seedling dry weight and seedling vigor weight index related to 100 mT for 20 minutes treatment. Ranking of treatments showed that exposure of seeds for 60 minutes in 75 mT and 10 minutes in 25 mT magnetic fields strength had the best outcomes.

Keywords: Radicle, Plumule, Germination rate, Seedling vigour index, Magneto priming