افراشیش کارایی جوانگزنی بذر علف گندمی بلند در شرایط تنش‌های دمای پایین و خشکی با استفاده از اسمورپایمینگ اوره

على مراد، و فرزاد شریفی‌زاده، و رضا توکل‌افشاری، و رضا معاون‌الامیری

1. استادان گروه زراعت و اصلاح نباتات دانشگاه یاسوج
2. دانشجویان دانشگاه کشاورزی و منابع طبیعی دانشگاه تهران
3. پست الکترونیک: amoradi@yu.ac.ir
4. تاریخ دریافت: 1392/12/12، تاریخ پذیرش: 1392/6/10

چکیده

پراپایمینگ بذر از جمله راه‌های افزایش کارایی جوانگزنی بذر در شرایط تنش زندگی و غیرزندگی می‌باشد. پراپایمینگ Agropyron elongatum (Host.) P. Beauv. در شرایط تنش‌های دمای پایین و تنش خشکی ارزیابی شد. آزمایش به صورت فاکتوریال سه‌گانه در قالب طرح بلوک‌های کامال تصادفی با چهار تکرار اجرا شد. عامل آزمایشی شامل پراپایمینگ در دو سطح بذر علف‌زده، و علف‌زده‌ساز و سطح این سرده‌ها اسپری شده در نظر گرفته شد. برای اندازه‌گیری نتایج می‌توان به این نشان داد که به‌صورت صفر (آب مغذوط)، 3، 6، و 9 و 12-بار (عامل شده توسط پیلیتین سولون 4000) بود. نتایج نشان داد که به‌طور قابل نظارت بر نشان افزایشی در حالت افزایش شدت نتایج تنش خشکی و همچنین تنش کرکمی از 3 درجه سانتی‌گراد نشان دادند. این در حالی است که با افزایش شدت تنش خشکی و تنش کرکمی افزایش مکوس‌گردید و حساسیت بذرها به تنش خشکی از بختن‌سپری‌های بالاتر از 3-بار شروع و در بخشنام 12-بار به جداکردن رسمی به هر حال بذرهای پراپایمینگ نسبت به بذرهای علف‌زده جوانگزنی بهتری در حالت تنش خشکی و تنش کرکمی در برابر دوره بذر جوانگزنی داشتند. نتایج این آزمایش نشان داد که پراپایمینگ شاخصی بینه گیاه‌های و سرعت جوانگزنی در دامنه دمایی 20-25 درجه سانتی‌گراد و بیننسل آبی صفر تا 3-بار حاصل شد.

واژه‌های کلیدی: اسمورپایمینگ بذر، بیننسل آبی، دمای پایین، علف گندمی بلند

مقدمه

"علف‌گندمی بلند" یا نام علمی Agropyron elongatum (Host.) P. Beauv. علف‌گندمی شهر و علف‌گندمی خوشه‌ای از خانواده Poaceae بوده و اغلب در مناطق مختلف دنیا بخصوص خاک سرد و یا کشت مختلط با سایر گیاهان مورد استفاده قرار می‌گیرد.

1 Poaceae
مقداری و همکاران: افزایش کارایی جوان‌زینی بر علی گندمی بلند... جمیل‌شنده جهت جلوگیری از فرسایش کشت می‌شود (کریمی، 1369). در این مراحل تحمل به ناش سرم و عیوب میان و پیش‌بینی پاده‌کاوش در مراحل جوان‌زینی درصد جوان‌زینی کاهش داده و طول دوره سیربندگی گیاه‌های درآمد و بروز سیربندگی دارای قدرت رقابت بالاتری در جمع‌آوری گیاهی بوده و شناسایی بیشتر دارد (سیمیکا و همکاران، 2001).

در دسترسی ضعیف به آب در مناطق خشک و نیمه‌خشک، جوان‌زینی بذر، استقرار گیاه‌های و دوام گیاه‌های چندساله را محدود می‌کند. کاهش جوان‌زینی و رشد گیاه‌های در شرایط نشان دهنده نبودن سیستمیکی از فورایه‌های بیوشماران می‌تواند نتیجه‌گیری به‌کلمه رطوبت در خاک می‌باشد (کاوور، 1398) به‌طور کلی، می‌تواند جوان‌زینی بر اثر امتصاک اثرات افزایش کاهش می‌باشد و اثرات آن باعث زنگین‌گیری نشان دهنده نبودن سیستمیکی می‌باشد. (کاوور، 1398).

در این سری، بسیاری از ایجادگان برای کاهش نیازهای ناش و جوان‌زینی بر تهیه به کار گرفته می‌باشند. سیستمیکی از فورایه‌های بیوشماران و طولانی‌سیر به اینجا و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی در مراحل تازه‌کشی نبوده دارد. (کاوور، 1398)

در گزارش‌های دیگری که به سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیوشماران و سیستمیکی و سیستمیکی که در جایگاه‌های تازه‌کشی نبوده دارد. (کاوور، 1398)

در محصولات شواعت شناسی به طور بیشترین کاهش در سیستمیکی از فورایه‌های بیOSHMARAN 1.2.19]
مواد و روش‌ها

به منظور بررسی اثر تنش‌های خشکی و دمای پایین بر جوانی و شاخص‌های کیفی‌گذاری به‌دست‌آمده با توجه به عوامل متعدد سایر تنش‌های مصرف و درجه حرارت به‌طور کامل، افرادی که در سطح خشکی و دمای پایین در دشت‌های بیشتر از آزمایشگاه‌های دردشت‌سازی در زمان بالا مصرف می‌کنند، به‌صورت فاکتوریل در قالب طرح بلورهای کاملاً تصادفی در چهار دوره تنش‌های خشکی و دمای پایین و در سال 1385، به‌طور کامل کشت گشت. در این مطالعه، به‌ترنت سه تنش‌های خشکی و دمای پایین در این دشت‌های با داشتگاههای مختلف و در سال 1385 با توجه به عوامل متعدد سایر تنش‌های مصرف و درجه حرارت به‌طور کامل، افرادی که در سطح خشکی و دمای پایین در دشت‌های بیشتر از آزمایشگاه‌های دردشت‌سازی در زمان بالا مصرف می‌کنند، به‌صورت فاکتوریل در قالب طرح بلورهای کاملاً تصادفی در چهار دوره تنش‌های خشکی و دمای پایین و در سال 1385، به‌طور کامل کشت گشت. در این مطالعه، به‌ترتیب سه تنش‌های خشکی و دمای پایین در این دشت‌های با داشتگاههای مختلف و در سال 1385

وقایعی مثل تسهیم پیش‌اندیش، و مواد دچاری که

اوج، رشد، پشتیبانی را می‌دهند (روبرگس و پاوی، 1994) ممکن است در طی پاتولوگی بدن اکتاً بیشتر

و کارایی آن را افزایش دهند. به هر حال مطالعه

واکنش‌های مطلوبی در این مطالعه از روی پاتولوگی

بهبود و اصلاح کامل آن ادامه می‌یابد. این که با آزمایشات

اطلاعات، بنر پاتولوگی، پشتیبانی برای گیاهان زراعی و

مرتبط در دسترس خواهد بود. بنابراین، با منظور افزایش

فهم ما از افراد مشابه پاتولوگی که به همراه

امپوزاسیونگان با اوره، در کاهش اثرات منفی ناشی از

نشانه‌های خشکی و دمای پایین جوانی در

عفون‌گذاری بنده تحقیق طریقی گردید.

پاتولوگی مختلف چهار دوره پاتولوگی در دشت‌های با

تماشایی شایع‌ترین شاخص‌های کیفی‌گذاری به‌دست‌آمده

برای ارزیابی رفتار جوانی به‌دست‌آمده در دشت‌های

و بانی‌سیل‌های آب‌مخلوط ابتدا ۵ میلی‌لیتر آب مصرف

پاتولوگی صفری (با) با محلول یلی‌ای‌کلکول (پاتولوگی

بانی‌سیل‌های آب‌مخلوطی) و سپس ۱۲ عدد گیاهان اجسادی شد و در ساعت ۲۴ هر دوره دقت احتمالی و شاخص‌های

پاسخ‌های جوانی از آزمایشگاه‌های دارای سه تنش و درصد

به‌طور کامل، افرادی که در سطح خشکی و دمای پایین

در این دشت‌های با داشتگاههای مختلف و در سال 1385

\[\psi = \text{miRT} \]

1 Burgass and Powell

2 Michel and Kaufman

3 Alkaraki

4 Al Mudarsi and Jutzi

5 Dell'Aquila and Tritto

6 Ruán

7 ISTA

Downloaded from yujs.yu.ac.ir at 5:59 +0430 on Thursday May 20th 2021 [DOI: 10.29252/yujs.1.2.19]
۲۷

مراض و همکاران: افزایش کارایی جوانه‌زدایی بذر علف گندم بلند

نتایج و بحث
درصد جوانه‌زدایی
نتایج جدول نتایج واریانس داده‌های صفات مورد بررسی در گیاه علف گندم بلند پایگاه آن است که
متغیرهای تشکل‌های تشکل نش Glass و برای می‌باشد
به‌منظور معنی‌داری صرف درصد جوانه‌زدایی کل را در
تأثیر قرار دادن (جدول ۱). همان‌گونه که در شکل
الف نیز مشخص است بذرها جوانه‌زدایی در دما ۳
جره سانتی‌گراد کمتری میزان جوانه‌زدایی را داشتند، با
افزایش دما از ۰ تا ۴ درصد افزایش یافت. این روند از ۰ تا
۴ درجه سانتی‌گراد نگه‌داری محسوسی تندیده و با افزایش
دما از ۰ تا ۲ و ۲۵ درجه سانتی‌گراد، درصد بذرها
جوایش‌گر شیب زیادی کاهش یافت. این شرایط
شبکه‌بندی تیوی‌بانی یکی بذر با بذری در هر دستکار
از بذرها یپریش‌نده بودن اثرات مثبت و همکار
(۲۰۰۰۰) با افزایش دما به بیش از دما دچار پاتسیل
آمیکی افزایش‌یافته که به این سرعت جوانه‌زدایی و
درصد جوانه‌زدایی نهایی بذر کاهش می‌یابد.

با در نظر گرفتن معنی‌داری اثر مقابل دما نشست
بخش‌نش دست صد که با افزایش زمانی نش خشکی
(مغزورگری نباتی آب) میزان جوانه‌زدایی کل کاهش
چشمگیری نمود (شکل ۱-۱). این کاهش در دماهای
پایین (۰ تا ۴ درجه سانتی‌گراد) و بالا (۲۰ تا ۲۵ درجه
سانتی‌گراد) محسوس‌تر بود. به‌طور مثال مشاهده شد که
در دما ۱۵ درجه سانتی‌گراد زمان نش دست نش خشکی
از پاتسیل‌برنیه به ۳-۴ درجه میزان کاهش آفتایی در دما (۲۵ درجه سانتی‌گراد) و
شبکه ساخت خشکی خوانه‌زدایی در دما به‌بیش از
مقایسه با دماهای نامناسب، قابلیت تحمیل شدیدهای
بالاتر نش خشکی را داشته. افزایش نوسانات صفت
درصد جوانه‌زدایی نهایی با کاهش پاتسیل در دما و
فستوکا نیز گزارش‌شده است (لارس و همکاران
(۲۰۰۴).)

1 Mean Germination Time
2 Ellis and Roberts
3 Seedling Vigour Index
4 Abdual-baki and Anderson
5 Agrawal
درصد گیاه‌های غیر عادی
در هر جمعیت بذری درصد بذرهای با ریشه‌های ساقه‌های غیر عادی یا فاقد هر بذر یک اینم و اندازه برحسب معیار ارزیابی شدند و نیز کیفیت بذر قابل استفاده نبود، نتایج نشان داد که در میان ترکیبات مختلف تیماری بین‌تیماری درصد گیاه‌های غیر عادی مربوط به بذرهای جوانه‌دار شده در دمای 4 درجه سانتی‌گراد و پان塞尔 آبی-6 بود (جدول 5). این در حالی است که در دمای 15 درجه سانتی‌گراد و پان塞尔 صفر بار کمترین قیمت جوانه‌زنی غیر عادی مشاهده شد. همان گونه که انتخاب می‌رفت از افزایش دما به‌ویژه در پانسل‌های آبی صفر و 2-بار، درصد گیاه‌های غیر عادی کاهش یافت این در حالی است که در

جدول 6- تجزیه و تحلیل گونه‌بندی جوانه‌زنی و رشد گیاه‌های بذرهای برابری و پارامیدشده علوفه‌گانی بلند در شرایط دمایی و پانسل آبی مختلف

میانگین سطح (MS)	درصد جوانه‌زنی غیرعادی	درصد جوانه‌زنی متعادل	تعداد	میانگین بیشترین سطح جوانه‌زنی
شاخ	ریشه‌های ساقه‌های غیر عادی	نسبت طولی	میزان گیاه‌های جوانه‌زنی	سرعت جوانه‌زنی
شاخ	ریشه‌های ساقه‌های غیر عادی	نسبت طولی	میزان گیاه‌های جوانه‌زنی	سرعت جوانه‌زنی
شاخ	ریشه‌های ساقه‌های غیر عادی	نسبت طولی	میزان گیاه‌های جوانه‌زنی	سرعت جوانه‌زنی

| نتایج جدول نشان داد که کل میانگین سرعت جوانه‌زنی در بین این تیمارها به‌طور کلی این است. در این جدول، سرعت جوانه‌زنی به‌وسیله روش دیجیتال تابش-زا بالا و نتایج رابطه واقعی بین میانگین سرعت جوانه‌زنی و تیمار گیاه‌های بذری کشور همگام که با توجه به داده‌های این جدول، درصد مقدار مشاهده شده در دمای 15 درجه سانتی‌گراد بود (جدول 2). بعضاً درک در طبیعه دمایی 3 تا 15 درجه سانتی‌گراد سرعت جوانه‌زنی
بی‌صورتی خطر افزایش یافته و شب افزایش در بذرها
برای شکست در بذرها بی‌پایین‌شده بود. این روند
می‌تواند نویجه‌گیری‌های اصلی‌تر باشد از طریق این مسئله
جوانزی و دمای در دماهای کمتر از دماهای بهبود
(برادری و همکاران، ۲۰۰۲). کاهش بی‌پایین‌شده
در دماهای ۱۰ درجه و ۱۰ درجه در هر دو
کاهش بی‌پایینی (۲۴ درجه) در این گیاه‌ها می‌تواند
آیلار را کاهش داده که می‌تواند به کاهش شاخص‌های
جوانزی مانند درصد جوانزی و سرعت جوانزی
می‌شود.

منابع

۱. Bradford
۲. Patane and Tringali
۳. Sultana
شکل 1- مقایسه میانگین اثرات منفی‌کننده دما بر افزایش خشکسازی (ب) و دمای گرده آمیخته (الف) بر درصد جوانه‌های گربه علف‌گردیده بلند. در ستون از میانگین 4 نتیجه درک شده است. میانگین‌ها با روش دانکن مقایسه شده و ستون‌هایی با خروج مشترک در سطح 0.05 درصد با هم تفاوت معنی‌دار ندارند.

به هر حال با مقایسه این شاخص در دماهای مختلف توان دریافت که با افزایش دما نتیجه سانتی‌گراد این شاخص به‌صورت تدریجی افزایش پیدا و در دماهای 15 تا 20 درجه سانتی‌گراد به شکار رسد (جدول 2). این روند در تشنج‌های صفر، 6-10 بار صادق بوده و در شدت‌های بالاتر نش خشکسازی (9-12 بار) مشاهده شد. از طرفی، بدون توجه به دما و با افزایش شدت تنش خشکسازی، مقدار این صفت در شدت‌های خشکسازی صفر و 3-4 بار تفاوت جنگلی نداشته و با افزایش شدت تنش خشکسازی از 3 تا 4-6 و 9-12 بار بیشتر از شدت‌های 1-2 بار و بیش از 10 بار، تا درجه توزیع صفر رشد. به هر حال طول گیاهچه بین بذرهای پرایورینه و پرایورینه نیز متغیر بود، این روند بیشتر در پتاسیل 6-8 بار و دماهای 15 و 20 درجه کامل‌تر پیش بود.

طول گیاهچه

اکثر گیاهچه طول گیاهچه حاصل جمع طول ریشه‌ها و ساقه‌های است. اما با بررسی این صفت می‌توان به دیده بود که در اکثر رشد جوانه‌های گربه علف‌گردیده ناقص

1 Maurimicale and Cavallaro
جدول 2- مقایسه میانگین اثر مقاومت چربی پراپیمیک و پتاسین آبی (نشان خشکی) بر صف جوانزی و رشد گیاهچه علف گندمی بلند

<p>| شاخص | نسبت طول گیاهچه به شاخص بندی | میانگین زمان طول گیاهچه (سانتی متر) | جوانزی (درصد) | خشکی جوانزی | جوانزی (پنال) | ضعیف (پنال) | پراپیمیک (پنال) | حمایت (پنال) | ضعیف (پنال) |
|-------|-------------------------------|----------------------------------|---------------|--------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| | | 14/3/8b | | | | | 3 | | | | | | | | |
| | | 14/3/8b | | | | | 3 | | | | | | | | |
| | | 14/3/8b | | | | | 3 | | | | | | | | |
| | | 14/3/8b | | | | | 3 | | | | | | | | |
| | | 14/3/8b | | | | | 3 | | | | | | | | |
| | | 14/3/8b | | | | | 3 | | | | | | | | |
| | | 14/3/8b | | | | | 3 | | | | | | | | |
| | | 14/3/8b | | | | | 3 | | | | | | | | |
| | | 14/3/8b | | | | | 3 | | | | | | | | |
| | | 14/3/8b | | | | | 3 | | | | | | | | |
| | | 14/3/8b | | | | | 3 | | | | | | | | |
| | | 14/3/8b | | | | | 3 | | | | | | | | |</p>
<table>
<thead>
<tr>
<th>استادیار</th>
<th>سال</th>
<th>فصل</th>
<th>موضوع</th>
</tr>
</thead>
<tbody>
<tr>
<td>اسم ۱</td>
<td>۱۴۰۱</td>
<td>۱</td>
<td>مطالعه ضروریتی ها در آزمون‌های لغی</td>
</tr>
</tbody>
</table>
نتیجه‌گیری
نتایج بررسی صفات جوانان نشان داد که تیمارهای پتانسیل آبی و دما، عواملی در سفر اجتماعی暴露 و درصد جوانان، سربازی جوامعی، طول ریشه‌وریت و ... این گاه‌ها تحت تأثیر قرار داده، برای جوانان در بازی‌های سنتی گزاره‌ای به تعداد کمتر از 6 درجه سانتی‌گراد و سرعه جوانانی است. این مطالعه بر اساس جوانانی زنیده؛ و درصد جوانانی زنیده، می‌تواند در توصیه‌های مختلف از این موضوع نقش داشته. در این آزمون، می‌توان گفت که در طول شرایط تشکیل و طبیعی می‌تواند گفت که در دماهای 15 و 20 درجه سانتی‌گراد و در حوال مشاهده شده که در خنثی صفات مادر درصد جوانانی و سرعه جوانانی، نسبت طول ریشه‌وریت به ساقه‌وریت به افراد نشان‌دهنده تنش افزایش یافته و در پاس‌های 9 به صورت حاکمیت رسید. این می‌تواند دلیلی در افزایش سازگاری به تنش خشکی با افزایش تشکیل باشد.

شاخص بند بذر
شاخص بند بذر به میزان تابعی از طول گیاه و درصد جوانانی زنیده به میزان معنادار تحت تأثیر ترکیبات مختلف پتانسیل آبی، دما و پرتاب‌گذار قرار گرفته است. در این آزمون، می‌توان گفت که در دماهایی از 6 تا 25 درجه سانتی‌گراد تنها 3 درصد جوانانی زنیده در دماهای 6 و 10 درجه سانتی‌گراد و 12 درجه سانتی‌گراد از این شاخص افزایش یافته تا در 15 و 20 درجه سانتی‌گراد به حداکثر رشد و در 20 و 25 درجه سانتی‌گراد نگیر و چندین نکته. در شرایط مختلف تنش خشکی نیز پتانسیل‌های آبی و سفر و 2-بار بیشتر مصرف می‌شود. این می‌تواند این در حالی است که پتانسیل‌های 12-20-بار مقدار این شاخص بسیار ناجی باشد. در راستای این نتایج عیسوند (1387) مشاهده کرد که اعمال شدت‌های تنش خشکی با پتانسیل‌های 12-20-بار در میان مستوفی زمان جوانانی و نسبت ریشه‌وریت به ساقه‌وریت را افزایش داد.

با توجه به نتایج مقایسه شاخص‌های درصد جوانانی و طول گیاهچه با شاخص بین‌یابانی گیاهی می‌توان دریافت که این شاخص بیش از آن که به درصد بذر گیاهچه و وابسته باشد به توانایی گیاهچه برای تولید رشد و
مسی جوانه‌زنی بهتری نسبت به بذر‌های پرایی‌نشده داشته‌است.

منابع
روحمی، ج.ر. 1387. تأثیر هیدروپرایمینگ و آسپروپرایمینگ بر خصوصیات جوانه‌زنی چهارگونه درخت شیاطین. شناسنامه، ک، تولکافشیاری، ر.و. جایی‌چی، م.ر. 1388. تأثیر آسپروپرایمینگ بر جوانه‌زنی بذر چهارگونه درخت شیاطین. تنش خشکی، مجله مرتع، 3(2): 349-374.

علیرضاد، ا. 1380. رابطه آب‌خاک و گیاه. انتشارات دانشگاه امام رضا، مشهد. 253 صفحه.

عباسی، م.ر. 1387. بررسی تأثیر برخی هورمون‌های گیاهی بر کیفیت توده‌زایی بذر درخت علف‌گندمی بند (Agropyron elongatum) تحت تنش خشکی. پایان نامه دکتری زراعت (فیزیولوژی گیاهان زراعی)، دانشگاه تهران. 276 صفحه.

کریمی، م.ر. 1392. زراعت و اصلاح گیاهان علف‌زایی. انتشارات دانشگاه تهران. 158 صفحه.

Increasing Seed Germination Efficiency of Tall Wheat Grass (*Agropyron elongatum* (Host.) P. Beauv) at Low Temperature and Drought Stress Conditions Using Urea Osmopriming

Ali Moradi¹,², Farzad Sharif Zadeh³, Reza Tavakkol Afshari³, Reza Maali Amiri¹

¹Assistant Professor, Department of Agronomy and Plant Breeding, Yasouj University, Yasouj, Iran

²,³,⁴ Associate Professor, Professor and Associate Professor, Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran

Corresponding author, E-mail address: amoradi@yu.ac.ir

(Received: 2014.02.26 - Accepted: 2014.12.30)

Abstract

Seed priming is one of the most important techniques used to improve seed germination under biotic and abiotic stresses. For this purpose, germination and seedling growth characteristics of primed seeds of Tall wheat grass (*Agropyron elongatum* (Host.) P. Beauv) were evaluated under drought and low temperature condition. A factorial experiment was conducted on the basis of randomized completely block design with three factors with four replications. The experimental factors were priming with two levels including urea primed (using urea -4 bar at 10 °C for 36 h) and non-primed seeds; germination temperatures, including 3, 6, 9, 12, 15, 20 and 25 °C; and osmotic potential including zero (distilled water), -3, -6, -9, and -12 bars (applied by polyethylene glycol 6000). Increasing trend have been observed for all germination indices, except mean germination time, with increasing temperature from 3 to 25 °C and seeds revealed the greatest sensitivity to temperatures below 9 °C. However, this trend was reversed with increasing drought stress, the seeds sensitivity to drought stress started from the potential of -6 bar and reached to maximum in -12 bar. However, primed seeds compared to non-primed seeds have demonstrated better germination under both drought and low temperature stresses. The results of this study showed that the highest seedling vigor index and germination rates achieved in the temperature range of 20 -25 °C and water potential of zero to -3 bar.

Keywords: Seed osmopriming, Water potential, Low temperature, Tall wheatgrass