اثر تاریخ کاشت و رطوبت بذر در برداشت بر ویژگی‌های جوانه‌نیزی بذر درخت سینگکل کراس ۷۰۴ تولیدی در استان اردبیل (مغان)

بیان اسکوئی، جمال‌الدین حمیدی، آقای مرادی، قاسم مقدم

دانشجوی دکتری و استاد گروه زراعت دانشگاه آزاد اسلامی واحد علم و تحقیقات تهران

استادگر مؤسس تحقیقات نیوت و گواهی بذر و نهال ایران

استادیار پژوهشکده بیوتکنولوژی کشاورزی ایران

استادیار مؤسس تحقیقات اصلاح و تهیه نهال و بذر

b_ossouei@yahoo.com

پست الکترونیک نویسنده مسئول:

(تاریخ دریافت: ۱۳۹۲/۰۶/۱۳ ؛ تاریخ پذیرش: ۱۳۹۲/۰۶/۱۴)

چکیده

این آزمایش در سال ۱۳۹۲ در ۲۰ محله شامل: مرکز تحقیقات کشاورزی و منابع طبیعی استان اردبیل (مغان) و مؤسس تحقیقات نیوت و گواهی بذر و نهال کرج به صورت آزمایش فاکتوریل در قالب طرح کاملاً تصادفی در سه تکرار اجرا شد. تیمارها عبارت بودند: تاریخ کاشت در سه سطح (۱۹ خرداد و ۲۰ اردیبهشت و ۲۱ خرداد)، رطوبت بذر در زمان برداشت، در چهار بند (۱۹:۳۰، ۲۰:۳۰ ۲۱:۱۵ و ۲۲:۱۵) و اندازه بذر، در سه سطح بذری (۱۰، ۱۲ و ۱۵ درصد). نتایج نشان داد که تأثیر اندازه بذر در کیفیت بذردهای تولیدی کاهش یافته است. کاهش بذردهای دیرگه دیسه در استان اردبیل، درصد جوانه‌زی استاندارد، متوسط زمان برای جوانه‌زنی، شاخص ویژه تولید بذر و بهره‌وری بذردهای، درصد جوانه‌زی در آزمون ظهور رشته‌چه و آزمون سرما، بود. نتایج نشان داد که با تأخیر در کاشت کیفیت بذردهای تولیدی کاهش یافته و در بذردهای جوانه‌زی استاندارد، متوسط بود. حداکثر درصد جوانه‌زی و بهره‌وری بذردهای تولیدی به ۲۰ درصد رسید برداشت بالای آغاز گردید و از تأخیر در زمان برداشت خودداری شد.

واژه‌های کلیدی: آزمون ظهور رشته‌چه، تاریخ کاشت، جوانه‌زنی استاندارد، کیفیت بذر

مقدمه

امروزه، روند رو به افزایش جمعیت دنیا از یکسوز و خستگی اقلیمی بر سر انسان، این ضرورت را ایجاد کرده است که به پیشرفت دوستی‌ها زراعی، به‌طور یک طرف، مبتنی بر زراعت پایدار در کشورهای زراعی و کارکنان به‌طور دیگر مبتنی بر تولید عالی و محصولاتی که عامل مختلفی در این انجام می‌پذیرد. محصولات که دارای کیفیت بالا و دارای عوامل مختلفی در این انجام می‌پذیرد. محصولاتی که دارای کیفیت بالا و دارای عوامل مختلفی در این انجام می‌پذیرد. محصولاتی که دارای کیفیت بالا و دارای عوامل مختلفی در این انجام می‌پذیرد.
اسکوئی و همکاران: اثر تاریخ کاشت و رطوبت در برداشت و وزنگی های جوگانیچی بذر درخت سیبگل کراس ۷۲

افزایش عملکرد و کیفیت بذر حامله می‌شود. این تفاوت در نتایج از دلیل افزایش ذرات باریک در حین انجام زاییده و در نتایج عملکرد تأثیرگذار است (تبرت و همکاران، ۲۰۰۶). کیفیت بذر به‌وسیله مواد و نوع خسارت‌های واردشده به بذرهای موجود، قابلیت حیات بذر و بینه بذر ارزیابی می‌شود. این وزنگی بر ذرات کیفیت بذر در حین انجام اثر متغیر عملکرد که برای کاشت در سه بذر افزایش یافته در حالی که بذرهای روان افزایش نشان داد.

گزارش کرد که در نوار ۸۰۰ی (۲۰۱۷) وزنگی که در افزایش مصرفی اسنادی در افزایش نیست به‌آفرید با فیزیولوژیکی و قابلیت افزایش بذر و میزان بذرهای موجود بذر افزایش یافته در حین انجام افزایش بذر بذر. این وزنگی بر ذرات کیفیت بذر در حین انجام افزایش یافته در حالی که بذرهای روان افزایش نشان داد.

فیوزولوژیکی و قابلیت افزایش بذر و میزان بذرهای موجود بذر افزایش یافته در حین انجام افزایش بذر بذر. این وزنگی بر ذرات کیفیت بذر در حین انجام افزایش یافته در حالی که بذرهای روان افزایش نشان داد.

References:

1. Tort
2. Agarwal
3. Munkvold and Rice
4. Samarah and Abu-Yahya
5. Sastawa
6. Calvino
7. Koca and Canavar
8. Abdel Rahman
گروه و همکاران (2002) در مطالعه کیفیت بذر لوبیای فرانسوی قبل از برداشت گزارش کردند که کیفیت توده بذر که علی دره پر شدن باردگان بروز آورده می‌گردد.

کاهش داشته است.

هرما و همکاران (2008) در آزمایش نقش باردگانی و درجه حرارت بعنوان اثرات محیطی روی گنهه‌ای از گراسه‌های وحشی نشان دادند که تأثیر این عوامل از طریق تغییر در طول دوره پر شدن دانه بر جوانه‌زی و بینه بذر حاصله بوده است و گنهه‌ای که مکانی می‌باشد از بینه بذر بالاتری نیز بروز نمی‌دارد بوده است.

روی و همکاران (1996) با مطالعه به روی برنج مشاهده کردند که بذرها که کوچک نسبت به بذرها بزرگ‌تر گونه‌های این نژادی ترند.

بعد از رسیدگی به عوامل موردنظر است که بررسی کیفیت بذر بهتر می‌باشد به دلیل تطبیق نسبی محیط‌های اطراف بذر در داده‌های محیطی (غلاف باردگانی) مناسب با میان‌گیری طی دوره قبل و بعد از برداشت کیفیت بذر اثر طولانی‌گذاشته و سبزی سرط بذر می‌شود. با اینکه کاوش در کشور در مناطق تولید بذر در تاریخ‌های متفاوت انجام می‌شود، این بررسی مطرح است که آیا ثابت کنیم به اهداف تاریخ کشت بر کیفیت بذرها تولیدی اثر دارد و یا یک آیا از تغییر زمان برداشت می‌توان کیفیت بذر تأثیر جدی از تغییر داد. لذا با توجه به اهمیت مطالعه اثر تغییرات تاریخ کشت و زمان برداشت به مطالعه بررسی اثر بر کیفیت بذر در تمیز بودن، این تحقیق با هدف بررسی تاریخ کشت و زمان برداشت بر کیفیت بذرها در منطقه مغان به اجرا درآمد.

مواد و روش‌ها

یافتن مرجع‌های

یافتن آزمایش در سال 1392 در مزارع بذر اردا (مشاهده)

تحقیقات کشاورزی و منابع طبیعی استان اردبیل (مغان)

اگر نیاز آزمایش‌های تجربی کیفیت بذر در آزمایشگاه

1 Herrera
2 Roy
آزمون ظهور ریشه‌چه

این آزمون به روش کاشت در بین کاغذ جوانه‌زینی انجام شد. دو لایه کاغذ تشک در زیر و یک لایه کاغذ بر روی بذرها قرار داده شد (آیستا، 2008). زیردما در روش‌نامه و دمای 20 درجه سانتی‌گراد به مدت 46 ساعت در اتاق کشت قرار داده شدند. در طول دوره هم‌صورت روانه بزرگی انجام شد و تعداد بذر جوانه‌زده پایدار می‌گردد.

در پایان دوره احراز این آزمون گیاه‌هایی عرآعدی و عادی تعبیه شدند. در پایان از بین گیاه‌هایی عادی تعداد 10 گیاه به‌طور تصادفی اندازه‌گیری و سطوح گیاهی، ریشه‌چه و ساقه‌چه، و در خشک آنها به‌طور دقیق با دقت 0.001 گرم توزین گردید.

بی‌توجهی با استفاده از نرم‌افزارهای آماری SPSS و SAS مورد تجزیه قرار گرفتند و مقایسه میانگین تیمارها نیز با آزمون حذف‌شکن دو طرفه (LSD) در سطح احتمال 0.05 درصد صورت پذیرفت. شکل‌نماه با استفاده از نرم‌افزار EXCEL رسم شدند.

نتایج و بحث

درصد گیاه‌های عادی

نتایج تجزیه‌واریانس نشان می‌دهد که اثر متوقف تاریخ کاشت، رطوبت برداشت و اندازه بذر بر درصد گیاه‌های عادی معنادار است (جدول 1). مقایسه میزان‌ها نشان داد (شکل 1) که در تاریخ کاشت اول چهار رنگ‌های مختلف برداشت اختلاف معناداری نیز بر درصد گیاه‌های عادی بذرها ادغام گردید. از این‌رو درک خریداری و رتبه‌بندی به‌طور متوسط رطوبت برداشت 15 درصد منجر به کاهش 3/12, 5/15 و 2/15 و درصدی نسبت به رطوبت‌های برداشت 30 و 25 درصدی شد.

MTG = \(\frac{\sum (n \cdot d)}{\sum n} \)

راطعه 1: که در این رابطه:

\(n \): تعداد بذرها جوانه‌زده طی 7 روز

\(d \): تعداد روزها

\(\sum d \): تعداد کل بذرها جوانه‌زده

شاخه بنیه گیاه‌ه

با استفاده از داده‌های اخیر شاخه وزنی بنیه گیاه‌ه از رابطه 2 تعبیه گردید (عبدوالباقی و اندرسون، 1973)

\(\text{شاخه طولی بنیه گیاه‌ه} = \text{درصد گیاه‌ه عادی} \times \text{طول گیاه‌ه}

\(\text{شاخه وزنی بنیه گیاه‌ه} = \text{درصد گیاه‌ه عادی} \times \text{وزن گیاه‌ه}

1. Mean time germination
2. Ellis and Roberts
3. Abdol-Baki and Anderson
جدول 1- نتایج واریانس برخی شاخص‌های جوامعی بذر، زمینه‌بندی تأثیر نقاط کشت، اندازه بذر و سطوح رطوبتی در مغان

<table>
<thead>
<tr>
<th>شاخص</th>
<th>سال دوم</th>
<th>سال سوم</th>
<th>سال چهارم</th>
<th>دوم چهارم</th>
<th>سوم چهارم</th>
<th>چهارم چهارم</th>
<th>چهارم چهارم</th>
<th>چهارم چهارم</th>
<th>چهارم چهارم</th>
<th>چهارم چهارم</th>
<th>چهارم چهارم</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد ظهور</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد بذر</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
<tr>
<td>درصد گیاه</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
<td>7512</td>
<td>6518</td>
<td>6512</td>
<td>7512</td>
<td>8706</td>
</tr>
</tbody>
</table>

تماس با: مرکز مطالعات نیروی انسانی و توسعه استان یزد
در این مورد ویچ، 1998، نیز بیان داشت تاریخ کاشت در هر منطقه با دنیزگر درخت دانی بسیار بالا و باینین تخمین می‌شود و اظهار داشت تاریخ‌های کشت زوده‌گر در سالmans منجر به افزایش عملکرد و کیفیت برنج شود که نتایج ما را تأیید کرد.

متوسط زمان لزوم برای جوانه‌زی

نتایج تجزیه وارباین تاریخ کاشت و رطوبت برداشت و اندازه بذر بر متوسط زمان لزوم برای جوانه‌زی می‌تواند است (جدول 1).

شاخص طولی بینه گیاهی

نتایج تجزیه وارباین تاریخ کاشت و رطوبت برداشت و اندازه بذر بر شاخص طولی بینه گیاهی معنی‌دار است (جدول 2). مقایسه میانگین‌های تاریخ کاشت با همدیگر نشان می‌دهد (شکل 2) که متوسط زمان لزوم برای جوانه‌زی در افزایش مختلند برداشت کاهش امکان‌پذیر است.

در بذرگاه‌های اندازه بیشتر نیز متوسط حاصل از تاریخ کاشت اول بهتر است. در تاریخ کاشت دوم نیز رطوبت‌های مختلف برداشت مختلف معنی‌داری را در متوسط زمان لزوم برای جوانه‌زی در افزایش می‌کند. در افزایش متوسط بذر برداشت 15 درصد حذف 7/8 درصد زمان می‌شود. در افزایش میانگین‌های تاریخ کاشت در 30 درصد نیز داشت. در نتایج کاشت سوم رطوبت برداشت 15 درصد حذف 7/8 درصد متوسط زمان لزوم برای جوانه‌زی در بذرگاه اندازه بیشتر نیز در مقایسه با بذرگاه‌های که با رطوبت نیز در بذرگاه‌های اندازه بیشتر در متوسط زمان لزوم برای جوانه‌زی در بذرگاه‌های اندازه بیشتر نیز در مقایسه با بذرگاه‌های که با رطوبت نیز در بذرگاه‌های اندازه بیشتر در متوسط زمان لزوم برای جوانه‌زی در بذرگاه‌های اندازه بیشتر نیز در مقایسه با بذرگاه‌های که با رطوبت نیز در بذرگاه‌های اندازه بیشتر در متوسط زمان LSD/5% 0/23137

2 Beck

1 Wych
شاخص وزنی گیاهچه

دردشت ۱۵ درصد حفظ ۳ درصد از رطوبت برداشت ۲۵ درصد بهتر بود و سایر سطوح رطوبتی اختلاف معنی‌داری نداشتند. در اندازه گردد سطوح رطوبتی اختلاف معنی‌داری بر روی شاخص طولی نهان اینجی گردیدند.

در تاریخ کاشت، پایین رطوبت برداشت ۱۵ درصد با سایر سطوح رطوبتی اختلاف معنی‌داری داشت. ابزار برنجین مراکش طولی نهان در رطوبت برداشت ۴۰ درصد و کمترین در بذرها به رطوبت برداشت ۱۵ درصد دیده شد.

در تاریخ کاشت سوم در اندازه پهن و متوسط تمام سطوح رطوبتی با یک‌دیگر اختلاف معنی‌داری را در شاخص طولی نهان جذب نشان دادند و در اندازه گردد رطوبتی برداشت ۲۵ و ۴۵ اختلاف معنی‌داری نداشتند و سایر سطوح رطوبتی با یک‌دیگر اختلاف معنی‌داری نداشتند. در اندازه ۱۷ و ۲۳ درصد با بذر گرد ۱۹ و ۱۱ در اندازه متوسط ۲۳ و ۱۹ و ۱۱ درصد کاهش در شاخص طولی نهان به گیاهچه ایجاد شد. در واقع کشت در بر از زمان مناسب دشت به دلیل بخوردن درون دانه به پوندگی‌های آلرناستن منجر به کاهش کیفیت بذر حاصل شد.

نتایج عبدالرحمن و همکاران (۲۰۰۱) موافق با نتایج ما بود.

بررسی ۲ (۲۰۱۹) بیان داشت شرایط تولید بذر با دانه اختلاف دارد. تولید کننده‌ها بذر باید تمامی عوامل را که منجر به تولید بذر با حداکثر کیفیت در محله رسیدگی فیزیولوژیکی سر و دار انرژی داشته باشد بپذیرند. عواملی که باعث کاهش کیفیت بذر یک از رسیدگی فیزیولوژیکی می‌شود را بایستباشد. اگرچه انتخاب از بروز تنش‌های محیطی به صرف رشد اکانت دخبر نبیز، باید پیش بینی هوشمند برای تمام فصل رشد بهتر مشکل است. ولی تولید کننده‌ها بذر می‌توانند با توسعه مزادر بزرگ در بذر تشکیل دهند و مدیریت زراعی از بروز برخی مشکلات جلوگیری کنند. از جمله عواملی که

1 Basra
下达ه بذر یکی از مشخص‌ترین ویژگی‌های مؤثر بر
بنیه نبات محسوب می‌شود. هارتیگ و ادواردز (۱۹۳۰)
بان کردن بذرها درشت‌تر به دلیل داشتن مواد غذایی
بیشتر برای رویش بذر ایجاد کاهش‌واره‌های قوی تری
را قبل از استقرار کامل گیاه دانه. سرعت چوامزنی و
سرعت ظهور بیشتری دارند که با نیازمندی به تهیه ما
دش‌ها (هارتیگ و ادواردز، ۱۹۳۰).

درصد ظهور ریشه‌چه

جدول جنبه‌ور ارتباط نشان می‌دهد که اثر متقابل
تارکت بذر ریشه‌چه و اندازه بذر ریشه‌چه بر ظهور
یک مدلی ارائه شده است (جدول ۱). مقایسه میانگین‌ها
نشان می‌دهد (شکل ۴) که در تارکت اول
بر ظهور ریشه‌چه اندازه‌های مختلف بذر ایجاد
کرده. در تارکت دوم بذر ریشه‌چه در
درصد مختلف معنادار در درصد ظهور ریشه‌چه

شکل ۴ - اثر متقابل تارکت و ریشه‌چه بر ظهور

وزنی بینه گیاه ۲۰۵.۵

آسکو و همکاران: اثر تارکت کاشت و ریشه‌چه

بذر در درصد ناگهانی... ۷۸۴

به ریشه‌چه ایجاد نکرده ولی سایر سطوح
رطوبتی ایجاد نبوده یکی از مهم‌ترین ویژگی‌های
بذرها در برداشت و کاشت. در برداشت ۱۵ درصد
و ۴/۱ درصد نسبت به رطوبت بدون ریشه‌چه ۲۵ درصد
کاهش در ظهور ریشه‌چه را نشان دادند. از
رطوبت‌های برداشت ۲۵ درصد و همچنین ۲۰ درصد
بر دصر ظهور ریشه‌چه بذرها ایجاد گرد

شکل ۵ - اثر متقابل تارکت و ریشه‌چه بر ظهور

وزنی بینه گیاه ۲۰۵/۵

بذر

۱ مدل

سازمان

۱ هارتیگ و ادواردز
در تاریخ کاشت دوم، رطوبت برداشت 15 درصد حدود 1/0 درصد نسبت به رطوبت برداشت 30 درصد و 4 درصد نسبت به رطوبت برداشت 1/5 درصد. درصد گیاهان عادی کمتری را تولید نمود. رطوبت‌های برداشت 10 و 1/5 درصد می‌تواند در این تاریخ کاشت گیاهان عادی بذر به‌دست آمده‌های گردن در مقصده با رطوبت‌های برداشت 30 و 45 درصد ایجاد نمود. در این تاریخ کاشت دوم، رطوبت برداشت 15 درصد 5 و 6 درصد نسبت به رطوبت‌های برداشت 1/0 و 1/5 درصد تولید کردن. در این تاریخ کاشت حداکثر درصد گیاهان عادی به بذر به‌دست آمده‌های گردن با رطوبت برداشت 15 درصد تحقق داشت.

در تاریخ کاشت سوم، رطوبت برداشت 15 درصد در اندازه پهن حدود 1/0 و 1/5 درصد نسبت به رطوبت‌های برداشت 30 و 45 درصد و در اندازه گردن حدود 1/5 و 17 درصد گیاهان عادی کمتری را تولید کردن. رطوبت‌های برداشت 30 و 45 درصد در بذر به‌دست آمده‌های متوسط حاصل از تاریخ کاشت سوم اختلاف معنی‌داری در درصد گیاهان عادی نداشتند، ولی سایر سطوح رطوبت‌های دیگر اختلاف معنی‌دار بین این سطوح بودند. به‌طوری که رطوبت برداشت 15 درصد نسبت به رطوبت برداشت 30 و 45 درصد و رطوبت برداشت 1/5 درصد نسبت به رطوبت برداشت 15 درصد، درصد گیاهان عادی کمتری تولید کردن. بیشترین درصد گیاهان عادی در این تاریخ کاشت به بذر به‌دست آمده‌های پهن با رطوبت 30 درصد و کمترین آن به بذر به‌دست آمده‌های اندازه گردن توسط برداشت 15 درصد تحقق داشت.

توجه نشان داد، وجود شرایط مرطوب و گرم بارندگی دوره نواری ناسالم سپس از رسیدگی از جمله عوامل مهم مؤثر کاشت گیاه گیاهان به‌سرعت هستند که قبل از برداشت بی‌توجهی می‌پذیرد. در بینان جهان این عوامل بر روی رطوبت در طی رسیدگی بیشترین اثر را بر وقوع فرسایش مزروعه ناشی‌داد. شرایط نامطلوب محیطی در طی پر شدن و رسیدگی بذر منجر به رسیدگی

درصد گیاهان عادی پس از آزمون سرما

جدول تجزیه واریانس نشان می‌دهد که اثر متقابل رطوبت برداشت، تاریخ کاشت و اندازه بذری بر درصد گیاهان عادی معنی‌دار است (جدول 1). مقایسه میانگین‌ها نشان می‌دهد (شکل 4) در تاریخ کاشت‌ها، سطوح مختلف رطوبت برداشت اختلاف معنی‌داری را در درصد گیاهان عادی می‌پذیرد. بذر به‌دست آمده‌ایان در مراحل مختلف رطوبت برداشت 15 درصد 4 و 25 درصد اختلاف معنی‌داری را در درصد گیاهان عادی داشتند. در هفتم تاریخ کاشت (تاریخ کاشت اول) رطوبت برداشت 15 درصد حدود 1/0 و 4 درصد در مقایسه با سطوح رطوبت‌های 25 و 30 درصد گیاهان عادی کمتری تولید کردن. در این تاریخ کاشت بیشترین درصد گیاهان عادی متعلق به بذر به‌دست آمده‌های پهن و گردن با رطوبت برداشت 30 درصد و کمترین آن به بذر به‌دست آمده‌های اندازه گردن گیر رطوبت برداشت 15 درصد اختصاص داشت.
اسکوئی و همکاران: اثر تاریخ کاشت و رطوبت بذر در برداشت بر ویژگی‌های جوانه‌زی بذر ذرت سی‌نگل کراس ۷۴۰

![Diagram](image-url)

شکل ۷- ارتباط تاریخ کاشت، رطوبت برداشت و اندازه بذری بر درصد گیاه‌های عادی پی از آزمون سرما ۵/۰/۲۰۲۰

به‌طور معنی‌داری کیفیت و کمیت تولید را کاهش می‌دهد (بادنو و همکاران، ۲۰۰۹). فرانکانتو و همکاران (۲۰۰۹) که در این تحقيق نیز به نتایج متفاوتی مُست‌آمد.

نتایج گستری

نتایج نشان داد تأخیر در کاشت و برداشت بذرینگام در منطقه معان بذری‌های تولیدی را دچار زوال مزرعه‌ای نموده و ببنی بذری می‌کند. با وقوع بارندگی، رطوبت بذرها بالا رفته و با قطع بارندگی و خشک شدن هوا رطوبت بین بام‌های می‌آید و این روند تا زمان برداشت جدید بار تکرار شد. در نتیجه این اگری بسیاری در منابع چندین بذر در زوال جوانه‌زی دچار کاهش درصد گیاه‌های غیر عادی یافتند. نتایج نشان داد، بالا دری‌ین درصد جوانه‌زی و ببنی بذری بذری‌های اندوزه بالای حاصل از تاریخ کاشت دوم که بر رویت ۳۰ درصد برداشت شد، تعلق داشت و حداقل آن در برزهای

منابع

اکرم قادی‌ف، کامکار، ب. و سلطانی، ا. (۱۳۸۷). علوم و تکنولوژی بذر. انتشارات دانشگاهی مشهد. ۵۱۲ صفحه.

چوگان، ر. (۱۳۸۷). تولید بذر. انتشارات سازمان تحقیقات، آموزش و ترویج کشاورزی. ۱۳۲ صفحه.

۱ Pádua

۲ Franca-Neto

The Effect of Planting Date and Seed Moisture Content at Harvest on Seed Germination Indices of Corn (Zea mays L.) Cv. S.c704-Produced in Ardebil Province (Moghan)

Bita Oskouei1, *, Eslam Majidi Hervan1, Aidin Hamidi2, Foad Moradi3, Ali Moghaddam4

1 Ph.D. Student, Department of Agronomy, Science and Research Branch, Islamic Azad University Tehran, Tehran, Iran
2 Seed and Plant Certification and Registration, Institute of Karaj, Karaj, Iran
3 Agriculture Biotechnology Research, Institute of Karaj, Karaj, Iran
4 Seed and Plant Improvement, Institute of Karaj, Karaj, Iran
*Corresponding author, E-mail address: b_oskouei@yahoo.com

(Received: 2015.02.26 ; Accepted: 2015.11.04)

Abstract

This experiment was conducted as a factorial experiment based on a completely randomized design with three replications at two locations: Agricultural and natural resource center of Ardebil province (Moghan) and seed and plant certification and registration institute of Karaj in 2013. The treatments included: planting date in three levels (10-May, 25-May and 9-Jun), seed moisture content at harvest time in four levels (30%, 25, 20 and 15) and seed size in three levels (flat, round and medium). The measured traits were a standard germination test, mean time of germination, seedling weight and length vigor index, germination percent in radical emergence test and germination percent in cold test. The results illustrated that delayed planting caused reduction of seed quality and this reduction was more obvious in delayed harvest (15%), also the reduction rate in round seeds was more than flattered and medium seeds. The minimum percentage of germination and vigor were seen in round seeds of third planting date and moisture harvest by 15%. So it is recommended for corn seed production to sow the seeds before the last week of May and when seed moisture content reached 30 percent, cob harvesting should be started and the harvest not be delayed.

Keywords: Standard germination, Seed quality, Radicle emergence test, Planting date