(Spring and Summer)                   Back to the articles list | Back to browse issues page

XML Persian Abstract Print


Associated Professor, Department of Plant Production and Genetics, Razi University, Kermanshah. Iran. , msaeidi@razi.ac.ir
Abstract:   (7 Views)
Objective: This study aimed to assess the efficiency of Zinc Oxide (ZnO) nanoparticles in mitigating salinity stress effects in comparison with bulk ZnO, and to examine the influence of different priming durations on chickpea seed germination under salinity conditions.
Method: The study was conducted as a factorial experiment in a completely randomized design with three replications on chickpea (Kasra cultivar). The first factor was the priming agent (1-100 nm ZnO nanoparticles, 40-60 nm ZnO nanoparticles, bulk ZnO, and hydro-priming). The second factor was the priming duration (6, 12, and 24 h), and the third factor was the level of salinity stress (0, 20, 40, and 80 mM NaCl). Key indicators related to germination quality and seedling growth were subsequently assessed.
Results: Salinity stress significantly affected the germination percentage, germination rate, mean germination time, mean daily germination, and seedling vigor weight index. The respective values at 0 and 80 mM NaCl were 98.7% vs. 68.4%, 15.6 vs. 10.4 germinated seeds per day, 2.11 vs. 2.39 days, 12.3 vs. 8.56 seeds per day, and 5466 vs. 1853. Salinity stress also significantly increased the root-to-shoot length ratio. Seed priming with 1-100 nm ZnO nanoparticles significantly increased seedling dry weight, shoot dry weight, root dry weight, and consequently, the seedling vigor index compared to other zinc forms and hydro-priming. Furthermore, this treatment reduced the percentage of abnormal seedlings to 20.7% under 80 mM NaCl. Priming durations of 12 and 24 h were superior to 6 h, resulting in a significant increase in seedling and shoot length, seedling and shoot weight, and the seedling vigor length index.
Conclusions: Salinity stress had significant adverse effects on germination and seedling growth characteristics and increased the proportion of abnormal seedlings. However, seed priming exerted a more pronounced positive effect on improving seedling growth and reducing the number of abnormal seedlings. Among the priming treatments, ZnO nanoparticles (1-100 nm) with a priming duration of 12 h were the most effective in enhancing seedling growth and the seedling vigor index, providing clear guidance for future research and applications.

Highlights
  • Seed priming at a salinity level of 20 mM significantly alleviated the adverse effects of salinity on seedling growth parameters.
  • Seed priming of chickpea with zinc nanoparticles (1 to 100 nm) was more effective than other seed priming methods in promoting seedling growth.
  • A priming duration of 12 h was identified as the optimal treatment for maximizing seedling growth and vigor index.
Full-Text [PDF 1104 kb]   (4 Downloads)    
Type of Study: Research | Subject: Seed Physiology
Received: 2025/06/2 | Revised: 2025/08/16 | Accepted: 2025/08/26

References
1. Abass Nejad, A., Majnoun Hesseini, N., Tavakol Afshari, R., & Sharif Zadeh, F. (2009). An evaluation of the effect of changing the sowing time through seed priming on seed yield and yield components in two chickpea (Cicer arietinum L.) cultivars. Iranian Journal of Field Crop Science, 40(1), 7-13. [In Persian]
2. Abdul-Baki, A. A., & Anderson, J. D. (1973). Relationship between decarboxylation of glutamic acid and vigor in soybean seed. Crop Science, 13(2), 227-232. [DOI:10.2135/cropsci1973.0011183X001300020023x]
3. Aggarwal, G., Edhigalla, P., Walia, P., Jindal, S., & Sandal, S. S. (2024). A method for screening salt stress tolerance in Indian mustard (Brassica juncea L. Czern & Coss) at seedling stage. Scientific Reports, 14, 12705. [DOI:10.1038/s41598-024-63693-6] [PMID] []
4. Albacete, A., Ghanem, M. E., Martínez-Andújar, C., Acosta, M., Sánchez-Bravo, J., Martínez, V., Lutts, S., Dodd, I. C., & Pérez-Alfocea, F. (2008). Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. Journal of Experimental Botany, 59(15), 4119-4131. [DOI:10.1093/jxb/ern251] [PMID] []
5. Alen, S. G., Dobrenz, A. K., Schonhorst, M. H., & Stoner, J. E. (1985). Heritability of NaCl tolerance in germination of alfalfa seed. Journal of Agronomy, 77(1), 99-101. [DOI:10.2134/agronj1985.00021962007700010023x]
6. Atta, K., Mondal, S., Gorai, S., Singh, A. P., Kumari, A., Ghosh, T., Roy, A., Hembram, S., Gaikwad, D. J., Mondal, S., Bhattacharya, S., Jha, U. C., & Jespersen, D. (2023). Impacts of salinity stress on crop plants: Improving salt tolerance through genetic and molecular dissection. Frontiers in Plant Science, 14, 1241736. [DOI:10.3389/fpls.2023.1241736] [PMID] []
7. Balasubramaniam, T., Shen, G., Esmaeili, N., & Zhang, H. (2023). Plants' response mechanisms to salinity stress. Plants, 12(12), 2253. [DOI:10.3390/plants12122253] [PMID] []
8. Benadjaoud, A., Dadach, M., El-Keblawy, A., & Mehdadi, Z. (2022). Impacts of osmopriming on mitigation of the negative effects of salinity and water stress in seed germination of the aromatic plant Lavandula stoechas L. Journal of Applied Research on Medicinal and Aromatic Plants, 31, 100407. [DOI:10.1016/j.jarmap.2022.100407]
9. Benavides-Mendoza, A., Betancourt-Galindo, R., & Francisco-Francisco, N. (2023). Impact of ZnSO₄- and ZnO nanoparticles on seed germination and seedling growth of Lettuce. Phyton, 92(6), 1831-1840. [DOI:10.32604/phyton.2023.028085]
10. Bruggink, G. T., Ooms, J. J. J., & Van der Toorn, P. (1999). Induction of longevity in primed seeds. Seed Science Research, 9(1), 49-53. [DOI:10.1017/S0960258599000057]
11. Carrillo-Reche, J., Newton, A. C., & Quilliam, R. S. (2021). Using seed respiration as a tool for calculating optimal soaking times for 'on-farm' seed priming of barley (Hordeum vulgare). Seed Science Research, 31(2), 116-124. https://doi.org/10.1017/S0960258521000039 [DOI:10.1017/S0960258521000095]
12. Cokkizgin, A., Cokkizgin, H., & Girgel, U. (2025). Salinity stress: comparative effects of sodium and potassium salts on Chickpea (Cicer arietinum L.) germination and vigor. Legume Research, 48(6), 944-950. [DOI:10.18805/LRF-848]
13. Dadaşoğlu, E., Ekinci, M., & Yıldırım, E. (2020). Effects of salt stress on seed germination of chickpea (Cicer arietinum L.) and pea (Pisum sativum L.). Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 51(1), 53-62. [DOI:10.17097/ataunizfd.596530]
14. Devika, O. S., Singh, S., Sarkar, D., Barnwal, P., Suman, J., & Rakshit, A. (2021). Seed Priming: A potential supplement in integrated resource management under fragile intensive ecosystems. Frontiers in Sustainable Food Systems, 5, 654001. [DOI:10.3389/fsufs.2021.654001]
15. Donia, D. T., & Carbone, M. (2023). Seed priming with zinc oxide nanoparticles to enhance crop tolerance to environmental stresses. International Journal of Molecular Sciences, 24(24), 17612. [DOI:10.3390/ijms242417612] [PMID] []
16. Elkoca, E., Haliloglu, K., Esitken, A., & Ercisli, S. (2007). Hydro- and osmopriming improve chickpea germination. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 57(3), 193-200. [DOI:10.1080/09064710600914087]
17. Ellis, R. H., & Roberts, E. H. (1981). The quantification of aging and survival in orthodox seeds. Seed Science and Technology, 9(2), 373-409.
18. Faizan, M., Sharma, P., Sultan, H., Alam, P., Sehar, S., Rajput, V. D., & Hayat, S. (2024). Nano-priming: Improving plant nutrition to support the establishment of sustainable agriculture under heavy metal stress. Plant Nano Biology, 10, 100096. [DOI:10.1016/j.plana.2024.100096]
19. Farooq, M., Hussain, M., Habib, M. M., Khan, M. S., Ahmad, I., Farooq, S., & Siddique, K. H. (2020). Influence of seed priming techniques on grain yield and economic returns of bread wheat planted at different spacings. Crop and Pasture Science, 71(8), 725-738. [DOI:10.1071/CP20065]
20. Food and Agriculture Organization of the United Nations (FAO). (2025). The state of food security and nutrition in the world 2025. https://www.fao.org/faostat/en/#data/QCL
21. Ghassemi-Golezani, K., & Roozbeh, B. (2011). Changes in seed quality of chickpea cultivars under salinity stress. Research on Crops, 12(3), 778-782.
22. Gul, J., & Shah, S. H. (2023). Screening of chickpea genotypes against salinity stress in Petri dish environment. Pakistan Journal of Science, 75(1), 1-8. [DOI:10.57041/pjs.v75i1.811]
23. Habibi, N., Terada, N., Sanada, A., & Koshio, K. (2024). Alleviating salt stress in tomatoes through seed priming with polyethylene glycol and sodium chloride combination. Stresses, 4(2), 210-224. [DOI:10.3390/stresses4020012]
24. Hameed, A., Hussain, S., Nisar, F., Rasheed, A., & Shah, S. Z. (2025). Seed priming as an effective technique for enhancing salinity tolerance in plants: mechanistic insights and prospects for saline agriculture with a special emphasis on halophytes. Seeds, 4(1), 14. [DOI:10.3390/seeds4010014]
25. Hualpa-Ramirez, E., Carrasco-Lozano, E. C., Madrid-Espinoza, J., Tejos, R., Ruiz-Lara, S., Stange, C., & Norambuena, L. (2024). Stress salinity in plants: new strategies to cope with in the foreseeable scenario. Plant Physiology and Biochemistry, 208, 108507. [DOI:10.1016/j.plaphy.2024.108507] [PMID]
26. International Seed Testing Association (ISTA). (2016). International rules for seed testing. Bassersdorf, Switzerland: ISTA.
27. Jarrar, H., El‐Keblawy, A., Albawab, M., Ghenai, C., & Sheteiwy, M. (2024). Seed priming as a promising technique for sustainable restoration of dryland. Restoration Ecology, 32(6), e14182. [DOI:10.1111/rec.14182]
28. Jatana, B. S., Grover, S., Ram, H., & Baath, G. S. (2024). Seed priming: molecular and physiological mechanisms underlying biotic and abiotic stress tolerance. Agronomy, 14(12), 2901. [DOI:10.3390/agronomy14122901]
29. Jha, U., Singh, S., & Kumar, P. (2024). Unlocking the nutritional potential of chickpea: strategies for biofortification and enhanced multinutrient quality. Frontiers in Plant Science, 15, 1391496. [DOI:10.3389/fpls.2024.1391496] [PMID] []
30. Johnson, R., & Puthur, J. T. (2021). Seed priming as a cost-effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162, 247-257. [DOI:10.1016/j.plaphy.2021.02.034] [PMID]
31. Kaushal, K., Rajani, K., Kumar, R. R., Ranjan, T., Kumar, A., Ahmad, M. F., Kumar, V., Kumar, V., & Kumar, A. (2024). Physio-biochemical responses and crop performance analysis in chickpea upon botanical priming. Scientific Reports, 14(1), 16223. [DOI:10.1038/s41598-024-59878-8] [PMID] []
32. Khadraji, A., Houasli, C., & Ghoulam, C. (2021). Effects of short and long-term hydro priming on germination stage and growth of some varieties of chickpea (Cicer arietinum L.) under drought stress. Journal of Plant Biology and Crop Research, 5(1), 1054.
33. Khan, M. O., Irfan, M., Muhammad, A., Ullah, I., Nawaz, S., Khalil, M. K., & Ahmad, M. (2022). A practical and economical strategy to mitigate salinity stress through seed priming. Frontiers in Environmental Science, 10, 991977. [DOI:10.3389/fenvs.2022.991977]
34. Kotula, L., Clode, P. L., Jimenez, J. C., & Colmer, T. D. (2019). Salinity tolerance in chickpea is associated with the ability to 'exclude' Na from leaf mesophyll cells. Journal of Experimental Botany, 70(18), 4991-5002. [DOI:10.1093/jxb/erz241] [PMID] []
35. Li, Y., Liang, L., Li, W., Ashraf, U., Ma, L., Tang, X., Pan, S., Tian, H., & Mo, Z. (2021). ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. Journal of Nanobiotechnology, 19, 75. [DOI:10.1186/s12951-021-00820-9] [PMID] []
36. Lu, Y., & Fricke, W. (2023). Salt stress-regulation of root water uptake in a whole-plant and diurnal context. International Journal of Molecular Sciences, 24(9), 8070. [DOI:10.3390/ijms24098070] [PMID] []
37. Lu, Y., Liu, H., Chen, Y., Zhang, L., Kudusi, K., & Song, J. (2022). Effects of drought and salt stress on seed germination of ephemeral plants in desert of northwest China. Frontiers in Ecology and Evolution, 10, 1026095. [DOI:10.3389/fevo.2022.1026095]
38. MacDonald, M. T., & Mohan, V. R. (2025). Chemical seed priming: molecules and mechanisms for enhancing plant germination, growth, and stress tolerance. Current Issues in Molecular Biology, 47(3), 177-205. [DOI:10.3390/cimb47030177] [PMID] []
39. Maguire, J. D. (1962). Speed of germination - aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2(2), 176-177. [DOI:10.2135/cropsci1962.0011183X000200020033x]
40. Mombeni, M., Arekhi, S., & Arami, S. A. (2015). Changes in the salinity using remote sensing and GIS (Case study: South Khuzestan). Desert Ecosystem Engineering, 4(6), 27-34. [In Persian]
41. Mustafa, G., Chaudhari, S. K., Manzoor, M., Batool, S., Hatami, M., & Hasan, M. (2024). Zinc oxide nanoparticles mediated salinity stress mitigation in Pisum sativum: a physio-biochemical perspective. BMC Plant Biology, 24(1), 835. [DOI:10.1186/s12870-024-05554-y] [PMID] []
42. Nezami, A., Nabati, J., Kafi, M., Boroumand Rezazadeh, E., Solouki, H., & Azari, S. J. (2022). Preliminary selection of desi chickpea genotypes to introduce cold tolerant cultivars for autumn planting in cold regions. Iranian Journal Pulses Research, 13(2), 139-159. [In Persian]. [DOI:10.22067/ijpr.v13i2.2205-1037]
43. Reed, R. C., Bradford, K. J., & Khanday, I. (2022). Seed germination and vigor: Ensuring crop sustainability in a changing climate. Heredity, 128(6), 450-459. [DOI:10.1038/s41437-022-00497-2] [PMID] []
44. Safshekan, S., Pourakbar, L., & Rahmani, F. (2025). The effect of Zn NPs on some growth, biochemical and anatomical factors of chickpea plant stem under UVB irradiation. Plant Nano Biology, 12, 100154. [DOI:10.1016/j.plana.2025.100154]
45. Scott, S. J., Jones, R. A., & Willams, W. A. (1984). Review of data analysis methods for seed germination. Crop Science, 24(6), 1192-1199. [DOI:10.2135/cropsci1984.0011183X002400060043x]
46. Sen, S. K., & Das, D. (2024). A sustainable approach in agricultural chemistry towards alleviation of plant stress through chitosan and nano-chitosan priming. Discover Chemistry, 1(1), 44. [DOI:10.1007/s44371-024-00046-2]
47. Seyedi, M., Hamzei, J., Fathi, H. A. D. I., Bourbour, A. M. I. N., & Dadrasi, V. (2012). Effect of seed priming with zinc sulfate on germination characteristics and seedling growth of chickpea (Cicer arietinum L.) Under salinity stress. International Journal of Agriculture, 2(3), 108.
48. Shelar, A., Singh, A. V., Chaure, N., Jagtap, P., Chaudhari, P., Shinde, M., Chaskar, M., Patil, R., & Nile, S. H. (2024). Nanoprimers in sustainable seed treatment: molecular insights into abiotic-biotic stress tolerance mechanisms for enhancing germination and improved crop productivity. Science of The Total Environment, 943, 175118. [DOI:10.1016/j.scitotenv.2024.175118] [PMID]
49. Shtaya, M. J., Al-Fares, H., Qubbaj, T., Abu-Qaoud, H., & Shraim, F. (2021). Influence of salt stress on seed germination and agromorphological traits in chickpea (Cicer arietinum L.). Legume Research, 44(12), 1455-1459. [DOI:10.18805/LR-633]
50. Tamagno, S., Sadras, V. O., Ortez, O. A., & Ciampitti, I. A. (2020). Allometric analysis reveals enhanced reproductive allocation in historical set of soybean varieties. Field Crops Research, 248, 107717. [DOI:10.1016/j.fcr.2020.107717]
51. Uçarlı, C. (2020). Effects of salinity on seed germination and early seedling stage. In Abiotic stress in plants. IntechOpen. [DOI:10.5772/intechopen.93647]
52. Waheed, A., Zhuo, L., Wang, M., Hailiang, X., Tong, Z., Wang, C., & Aili, A. (2024). Integrative mechanisms of plant salt tolerance: Biological pathways, phytohormonal regulation, and technological innovations. Plant Stress, 14, 100652. [DOI:10.1016/j.stress.2024.100652]
53. Wang, Q., Xu, S., Zhong, L., Zhao, X., & Wang, L. (2023). Effects of zinc oxide nanoparticles on growth, development, and flavonoid synthesis in ginkgo biloba. International Journal of Molecular Sciences, 24(21), 15775. [DOI:10.3390/ijms242115775] [PMID] []
54. Waqas, M., Korres, N. E., Khan, M. D., Nizami, A. S., Deeba, F., Ali, I., & Hussain, H. (2019). Advances in the Concept and Methods of Seed Priming. In Priming and pretreatment of seeds and seedlings: Implication in plant stress tolerance and enhancing productivity in crop plants (pp. 11-41). Springer Singapore. [DOI:10.1007/978-981-13-8625-1_2]
55. Zhou, H., Shi, H., Yang, Y., Feng, X., Chen, X., Xiao, F., Lin, H., & Guo, Y. (2023). Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics, 51(1), 16-34. [DOI:10.1016/j.jgg.2023.08.007] [PMID]
56. Zou, Y., Zhang, Y., & Testerink, C. (2022). Root dynamic growth strategies in response to salinity. Plant, Cell & Environment, 45(3), 695-704. [DOI:10.1111/pce.14205] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.