(Autumn & Winter)                   Back to the articles list | Back to browse issues page

XML Persian Abstract Print


Agriculture Research, Education and Extension Organization(AREO), Seed and Plant Certification and Registration Institute (SPCRI) , a.hamidi@areeo.ac.ir
Abstract:   (705 Views)
Extended abstract
Introduction: Seed germination has always been of interest to plant ecologists due to its key role in plant population establishment. Also, due to the importance of this process in seed certification, this phenomenon is of interest to control and seed certification experts. Temperature, access to sufficient humidity, and the presence of light in light-sensitive species for seed germination are considered to be the most important natural factors for seed germination. Additionally, the time required for germination and sufficient early seedling growth are important to determine the potential seed germination. Therefore, determining the temperature, the need or lack of light, as well as the time required for germination and the suitable substrate for planting seeds, are of great importance in the process of seed certification laboratory tests.
Materials and Methods: In order to determine the optimal conditions for seed germination of three species of Salicornia persica, S. persepolitana, and S. bigelovi, the seeds were grown under three constant temperatures of 20, 25, and alternating temperatures of 20-25 °C (8-16 hours light-dark), two culture beds (top-of-paper (TP) and between-paper (BP)), and two germination periods of 7 and 12 days.
Results: The results showed that the seeds of S. bigelovi species had the highest percentage of normal seedlings at 25 °C constant temperature for 7 days in the top-of-paper (TP) substrate. Also, the seeds of S. persica had the highest percentage of normal seedlings at 20-25 °C alternating temperature for 7 days in the top-of-paper (TP) substrate. S. persepolitana seeds at 25 °C constant temperature for 7 days on the top-of-paper (TP) substrate had the highest percentage of normal seedlings. S. persica, S. bigelovi, and S. persepolitana seeds had a higher percentage of normal seedlings in both germination durations and temperatures, respectively.
Conclusions: The results of this research showed that the seeds of the studied Salicornia species did not require light for germination. Also, in terms of temperature requirements, the time required for germination, and the substrate, they differed from each other. The seeds of S. persica reached the maximum percentage of normal seedlings at 20-25 °C alternating temperatures. The seeds of S. bigelovi and S. persica species needed a shorter time to reach the maximum percentage of normal seedlings, while the seeds of S. persepolitana needed a longer time to germinate and reach the maximum percentage of normal seedlings. Therefore, it was determined that the best temperature, duration, and substrate to achieve the maximum percentage of normal seedlings in the standard seed germination test were 25 °C for 7 days and top-of-paper (TP) substrate for S. bigelovi, 20-25 °C alternating temperature for 7 days and top-of-paper (TP) substrate for S. persica, and 20 °C constant temperature for 7 days and top-of-paper (TP) substrate for S. persepolitana species.

Highlights:
  1. Light was not necessary for the studied Salicornia species seeds' germination.
  2. The studied Salicornia species seeds' germination response to optimum temperature was different.
  3. The studied Salicornia species seeds' optimum germination duration was different.
     
Type of Study: Research | Subject: General
Received: 2024/05/29 | Revised: 2025/01/26 | Accepted: 2024/11/3

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.