Volume 11, Issue 1 ((Spring and Summer) 2024)                   Iranian J. Seed Res. 2024, 11(1): 145-166 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rezaei Z, Roein Z, Sabouri A, Hajinia S. (2024). Comparative analysis of seed germination in Thymus daenensis and T. vulgaris under water potential stress using hydrotime model. Iranian J. Seed Res.. 11(1), 145-166. doi:10.61186/yujs.11.1.145
URL: http://yujs.yu.ac.ir/jisr/article-1-610-en.html
University of Guilan , a.sabouri@guilan.ac.ir
Abstract:   (485 Views)
Extended abstract
Introduction: Seed germination and seedling establishment are the most sensitive stages in the life cycle of a plant. Among the environmental factors, water potential is an important factor affecting the seed germination of various plants. This research aims to evaluate the effects of water potential on germination indices and quantify the effect of water potential the germination responses of Thymus medicinal plant seeds.
Materials and Methods: A factorial experiment was carried out in the form of a completely randomized design with four replications at the laboratories of the Department of Agronomy and Plant Breeding, Ilam University in the winter of 2023. The factors of the experiment included two types of Thymus (Thymus daenensis and T. vulgaris) and water potential stress induced by polyethylene glycol (PEG-6000) at six levels (0, -0.1, -0.3, -0.5, -0.7, and -0.9 MPa).
Results: The results showed as the water potential decreased to -0.1, -0.3, -0.5, and -0.7 MPa, seed germination percentage respectively went down by 8.43, 43.26, 61.80, and 88.76% in T. daenensis and 19.74, 44.08, 61.18 and 92.76% in T. vulgaris compared with water potential stress-free conditions. Also, T. vulgaris did not germinate at a water potential of -0.9 MPa, whereas some seeds of the T. daenensis plant germinated under this condition. The highest germination rate in both T. daenensis and T. vulgaris species was observed under stress-free conditions, and there was significant difference between the species. Four statistical distributions including normal, logistic, log-logistic, and Gumbel, were compared to quantify the germination response of Thymus to water potential. In order to evaluate the models, corrected Akaike information criterion (AICc), the coefficient of determination (R2adj), and root mean square error (RMSE) were used. The lowest AICc index values for T. daenensis were associated with the log-logistic and logistic distributions (-2012 and -2006), and the Gumbel distribution (-1665) in T. vulgaris, suggesting the superior distributions for quantifying Thymus's response to water potential. Estimation of parameters related to the hydrotime model showed that T. daenensis species had a lower hydrotime constant value (θH)(23.91 MPa hour-1) compared with T. vulgaris (28.06 MPa hour-1), which indicated a higher germination rate in T. daenensis. The value of ψb(50)  in T. daenensis (-0.455 MPa) was lower than that of T. vulgaris (-0.388 MPa). Therefore, based on the results, T. daenensis showed a greater ability to tolerate drought during the germination stage.
Conclusions: In general, the results showed that the effects of water potential stress on the germination components of T. vulgaris were greater than those of T. daenensis, and according to the parameters of the hydrotime model, T. daenensis was more tolerant than T. vulgaris.

Highlights:
  1. The best distribution in the hydrotime model was determined for predicting Thymus daenensis and Thymus vulgaris seed germination under water potential stress conditions.
  2. The threshold level of water potential stress causing a significant decrease in the germination components of Thymus daenensis and Thymus vulgaris was determined.
  3. Based on the hydrotime model, Thymus species was determined to be more tolerant to water potential stress during germination.
Full-Text [PDF 686 kb]   (111 Downloads)    
Type of Study: Research | Subject: Seed Physiology
Received: 2024/04/22 | Revised: 2024/06/19 | Accepted: 2024/06/22 | ePublished: 2024/09/21

References
1. Abbas Zadeh, B., Sefidkon, F., Sharifi Ashoor Abadi, E., Mirza, M., Naderi, M., Layegh Haghighi, M. and Naderi, B. 2018. Economical production of Thymus daenensis L. with proper nutrition. Iran Nature, 3(3): 22-31.‏ [In Persian].
2. Abdul-Baki, A.A. and Anderson, J.D. 1973. Vigour determination of soybean seed by multiple criteria. Crop Science, 13(6): 630-633. [DOI:10.2135/cropsci1973.0011183X001300060013x]
3. Alebrahim, M. T., Sabaghnia, N., Ebadi, A. and Moheboldini, M. 2005. Study of drought and salinity stress on germination of common thyme (Thymus vulgaris). Journal of Research in Agricultural Science, 1: 13-19.
4. Alimagham, S.M. and Ghaderi-Far, F. 2014. Hydrotime model: introduction and application of this model in seed researches. Environmental Stresses in Crop Sciences, 7(1): 41-52.‏ [In Persian].
5. Balouchi, H., Soltani Khankahdani, V., Moradi, A., Gholamhoseini, M., Piri, R., Heydari, S. Z. and Dedicova, B. 2023. Seed fatty acid changes germination response to temperature and water potentials in six sesame (Sesamum indicum L.) cultivars: Estimating the cardinal temperatures. Agriculture, 13(10): 1-17. [DOI:10.3390/agriculture13101936]
6. Batool, M., El-Badri, A.M., Hassan, M.U., Haiyun, Y., Chunyun, W., Zhenkun, Y. and Zhou, G. 2022. Drought stress in Brassica napus: effects, tolerance mechanisms, and management strategies. Journal of Plant Growth Regulation, 42(345): 1-25. [DOI:10.1007/s00344-021-10542-9]
7. Behboud, R., Moradi, A., Piri, R., Dedicova, B., Fazeli-Nasab, B. and Ghorbanpour, M. 2024. Sweet corn (Zea mays L.) seed performance enhanced under drought stress by chitosan and minerals coating. BMC Plant Biology, 24(1): 1-17. [DOI:10.1186/s12870-024-05704-2] [PMID] []
8. Bradford, K. J. 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50(2): 248-260. [DOI:10.1614/0043-1745(2002)050[0248:AOHTTQ]2.0.CO;2]
9. Burnham, K.P. and Anderson, D.R. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer Verlag. New York, USA. 488p.
10. Cafaro, V.; Alexopoulou, E.; Cosentino, S.L.; Patanè, C. 2023. Assessment of germination response to salinity stress in castor through the hydrotime model. Agronomy, 13: 2783. [DOI:10.3390/agronomy13112783]
11. Cardoso, V.J.M. and Bianconi, A. 2013. Hydrotime model can describe the response of common bean (Phaseolus vulgaris L.) seeds to temperature and reduced water potential. Acta Scientiarum. Biological Sciences, 35(2): 255-261.‏ [DOI:10.4025/actascibiolsci.v35i2.15393]
12. Channaoui, S., El Idrissi, I.S., Mazouz, H. and Nabloussi, A. 2019. Reaction of some rapeseed (Brassica napus L.) genotypes to different drought stress levels during germination and seedling growth stages. Oilseeds & Fats Crops and Lipids, 26: 23. [DOI:10.1051/ocl/2019020]
13. Chen, D., Chen, X., Wang, J., Zhang, Z., Wang, Y., Jia, C. and Hu, X. 2021. Estimation of thermal time model parameters for seed germination in 15 species: the importance of distribution function. Seed Science Research, 31(2): 83-98. [DOI:10.1017/S0960258521000040]
14. Derakhshan A., Akbari H. and Gherekhloo J. 2014. Hydrotime modeling of Phalaris minor, Amaranthus retroflexus and A. blitoides seed germination. Iranian Journal of Seed Sciences and Research, 1(1): 82-95.
15. Derakhshan, A. and Moradi-Telavat, M. R. 2016. Hydrotime analysis of yellow Sweetclover (Melilotus officinalis (L.) Lam.), wild Mustard (Sinapis arvensis L.) and Barley (Hordeum vulgare L.) seed germination. Journal of Iranian Plant Protection Research, 30(3): 518-532.‏
16. Ellis, R. H., Covell, S., Roberts, E. H., and Summerfield, R. J. 1986. The influence of temperature on seed germination rate in grain legumes: II. Intraspecific variation in chickpea (Cicer arietinum L.) at constant temperatures. Journal of Experimental Botany, 37(10): 1503-1515. [DOI:10.1093/jxb/37.10.1503]
17. Fahad, S., Bajwa, A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M., Alharby, H., Wu, C., Wang, D. and Huang, J. 2017. Crop production under drought and heat stress: plant responses and management options. Frontiers in plant science, 1147.‏ [DOI:10.3389/fpls.2017.01147] [PMID] []
18. FAO. 2016. (Food and Agricultural Organization). http://faostat.Fao.Org.
19. Farahinia, P., Sadat-Noori, S.A., Mortazavian, M.M., Soltani, E. and Foghi, B. 2017. Hydrotime model analysis of Trachyspermum ammi (L.) Sprague seed germination. Journal of Applied Research on Medicinal and Aromatic Plants, 5: 88-91.‏ [DOI:10.1016/j.jarmap.2017.04.004]
20. Fazeli-Nasab, B., Khajeh, H., Piri, R. and Moradian, Z. 2023. Effect of humic acid on germination characteristics of Lallemantia royleana and Cyamopsis tetragonoloba under salinity stress. Iranian Journal of Seed Research, 9(2): 51-62. [In Persian]. [DOI:10.61186/yujs.9.2.51]
21. Ghasemi Pirbalouti, A., Emami Bistghani, Z. and Malekpoor, F. 2015. An overview on genus Thymus. Journal of Medicinal Herbs, 6(2): 93-100.‏
22. Gorzi, A., Omidi, H. and Bostani, A. 2020. Effect of stevia (Stevia rebaudiana) seed priming treatments with salicylic acid, iron, and zinc on some germination traits and photosynthetic pigments under drought stress. Iranian Journal of Seed Research, 6(2): 125-135.‏ [In Persian]. [DOI:10.29252/yujs.6.2.125]
23. Gremer, J.R., Chiono, A., Suglia, E., Bontrager, M., Okafor, L. and Schmitt, J. 2020. Variation in the seasonal germination niche across an elevational gradient: the role of germination cueing in current and future climates. American Journal of Botany, 107(2): 350-363.‏ [DOI:10.1002/ajb2.1425] [PMID]
24. Gummerson, R.J. 1986. The effect of constant temperatures and osmotic potentials on the germination of sugar beet. Journal of Experimental Botany, 37(6): 729-741. [DOI:10.1093/jxb/37.6.729]
25. Hosseini, A., Salehi, Moradi, A. and Balouchi H. 2020. The effects of bio priming on some germination indices of Pimpinella anisum L., Faridan accession under drought stresss. Iranian Journal of Seed Science and Technology, 9(1): 1-13. [In Persian].
26. Hosseini-Moghaddam, M., Moradi, A., Piri, R., Glick, B.R., Fazeli-Nasab, B. and Sayyed, R.Z. 2024. Seed coating with minerals and plant growth-promoting bacteria enhances drought tolerance in fennel (Foeniculum vulgare L.). Biocatalysis and Agricultural Biotechnology, 58: 1-12. [DOI:10.1016/j.bcab.2024.103202]
27. Karimi, A., Ghasemi Pirbalouti, A., Malekpoor, F., Yousefi, M. and Golparvar, A. R. 2010. Evaluation of ecotype and chemotype diversity of Thymus daenensis Celak. on Isfahan and Chaharmahal and Bakhtiari provinces. Journal of Medicinal Herbs, 1(3): 1-10.‏
28. Khan, S., Ullah, A., Ullah, S., Saleem, M.H., Okla, M.K., Al-Hashimi, A., Chen, Y. and Ali, S. 2022. Quantifying temperature and osmotic stress impact on seed germination rate and seedling growth of eruca sativa mill. via hydrothermal time model. Life, 12(3): 400.‏ [DOI:10.3390/life12030400] [PMID] []
29. Li, W., Wang, Y., Zhang, Y., Wang, R., Guo, Z. and Xie, Z. 2020. Impacts of drought stress on the morphology, physiology, and sugar content of Lanzhou lily (Lilium davidii var.) unicolor. Acta Physiologiae Plantarum, 42: 1-11. [DOI:10.1007/s11738-020-03115-y]
30. Marthandan, V., Geetha, R., Kumutha, K., Renganathan, V.G., Karthikeyan, A. and Ramalingam, J. 2020. Seed priming: a feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Sciences, 21(21): 8258.‏ [DOI:10.3390/ijms21218258] [PMID] []
31. Mesgaran, M.B., Mashhadi, H.R., Alizadeh, H., Hunt, J., Young, K.R. and Cousens, R.D. 2013. Importance of distribution function selection for hydrothermal time models of seed germination. Weed Research, 53: 89-101. [DOI:10.1111/wre.12008]
32. Michel, B.E., and Kaufmann, M.R. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5): 914-6. [DOI:10.1104/pp.51.5.914] [PMID] []
33. Mosavi, S.M., Bijanzadeh, E., Zinati, Z. and Nazari, L. 2021. Seed germination prediction of osmotic-stressed safflower (Carthamus tinctorius L.) at different temperatures using hydrotime analysis. Iran Agricultural Research, 40(1): 83-92.‏
34. Ouahzizi, B., Elbouny, H., Sellam, K., Alem, C. and Bakali, A. H. 2023. Effects of temperature, provenance, drought stress and salinity on seed germination response and early seedling stage of Thymus atlanticus (Ball) Roussine. Journal of Applied Research on Medicinal and Aromatic Plants, 34: 100482.‏ [DOI:10.1016/j.jarmap.2023.100482]
35. Patel, F.Y., Patel, A. and Shah, N.J. 2023. Osmo-priming with a novel actives Carrabiitol® alleviates abiotic stresses in Sorghum and Fenugreek: effect on seed germination and seedling growth. Agricultural Science Digest. 43(6): 741-750. [DOI:10.18805/ag.D-5771]
36. Pichand, M., Dianati Tilaki, G.A. and Sadati, E. 2021. Effects of hydropriming and drought stress on germination traits and seedling growth of Cymbopogon olivieri. Journal of Range and Watershed Management, 74(2): 323-338. [In Persian].
37. Piri, R., Moradi, A., Salehi, A. and Balouchi, H. R. 2021. Effect of seed biological pretreatments on germination and seedling growth of cumin (Cuminum cyminum L.) under drought stress. Iranian Journal of Seed Science and Technology, 9(4): 11-26. [In Persian].
38. Poudel, R., Finnie, S. and Rose, D. J. 2019. Effects of wheat kernel germination time and drying temperature on compositional and end-use properties of the resulting whole wheat flour. Journal of Cereal Science, 86: 33-40.‏ [DOI:10.1016/j.jcs.2019.01.004]
39. Qi, Y., Ma, L., Ghani, M.I., Peng, Q., Fan, R., Hu, X. and Chen, X. 2023. Effects of drought stress induced by hypertonic polyethylene glycol (PEG-6000) on Passiflora edulis sims physiological properties. Plants, 12(12): 2296.‏ [DOI:10.3390/plants12122296] [PMID] []
40. Queiroz, M.S., Oliveira, C.E., Steiner, F., Zuffo, A.M., Zoz, T., Vendruscolo, E.P., Silva, M.V., Mello, B.F.F.R., Cabra, R.C. and Menis, F.T. 2019. Drought stresses on seed germination and early growth of maize and sorghum. Journal of Agricultural Science, 11(2): 310-318. [DOI:10.5539/jas.v11n2p310]
41. Romano, A. and Bravi, R. 2021. Hydrotime model to evaluate the effects of a set of priming agents on seed germination of two leek cultivars under water stress. Seed Science and Technology, 49(2): 159-174.‏ [DOI:10.15258/sst.2021.49.2.07]
42. Saberali, S.F. and Shirmohamadi-Aliakbarkhani, Z. 2020. Quantifying seed germination response of melon (Cucumis melo L.) to temperature and water potential: Thermal time, hydrotime and hydrothermal time models. South African Journal of Botany, 130: 240-249.‏ [DOI:10.1016/j.sajb.2019.12.024]
43. Sabokdast, M., Salehi, F. and Rezaizadeh, A. 2018. Effect of drought-induced stress by PEG6000 on physiological and morphological traits of Lentil (Lens culinaris) seed germination in order to selection of drought tolerant genotypes. Iranian Journal of Field Crop Science, 49(3): 39-47. [In Persian].
44. Sabouri, A., Azizi, H. and Nonavar, M. 2020. Hydrotime model analysis of lemon balm (Melissa officinalis L.) using different distribution functions. South African Journal of Botany, 135: 158-163.‏ [DOI:10.1016/j.sajb.2020.08.032]
45. Salehi Salmi, M. 2022. Comparison of germination indices and alpha-amylase activity of four tropical turf grass species in response to drought and salinity stresses. Iranian Journal of Seed Sciences and Research, 9(4): 41-57.‏ [In Persian].
46. Sanehkoori, F.H., Pirdashti, H. and Bakhshandeh, E. 2021. Quantifying water stress and temperature effects on camelina (Camelina sativa L.) seed germination. Environmental and Experimental Botany, 186: 104450.‏ [DOI:10.1016/j.envexpbot.2021.104450]
47. Seleiman, M.F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H.H. and Battaglia, M. L. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2): 259-284.‏ [DOI:10.3390/plants10020259] [PMID] []
48. Shah, S., Ullah, S., Ali, S., Khan, A., Ali, M. and Hassan, S. 2021. Using mathematical models to evaluate germination rate and seedlings length of chickpea seed (Cicer arietinum L.) to osmotic stress at cardinal temperatures. PLoS One, 16(12): e0260990.‏ [DOI:10.1371/journal.pone.0260990] [PMID] []
49. Shah, T., Latif, S., Khan, H., Munsif, F. and Nie, L. 2019. Ascorbic acid priming enhances seed germination and seedling growth of winter wheat under low temperature due to late sowing in Pakistan. Agronomy, 9(11): 757-767. [DOI:10.3390/agronomy9110757]
50. Shahrajabian, M.H., Khoshkharam, M., Zandi, P., Sun, W. and Cheng, Q. 2020. The influence of temperatures on germination and seedling growth of pyrethrum (Tanacetum cineraiifolium) under drought stress. International Journal of Advanced Biological and Biomedical Research, 8(1): 29-39. [DOI:10.33945/SAMI/IJABBR.2020.1.4]
51. Soltani, A. and Maddah, V. 2010. Simple applications for agriculture education and research. Agroecology Association, University of Shahid Beheshti, Tehran, Iran 80 p. [In Persian].
52. Soltani, A. and Sinclair, T.R. 2012. Modeling Physiology of Crop Development, Growth and Yield. CABI, Wallingford.‏ 322p. [DOI:10.1079/9781845939700.0000]
53. Soltani, E., Adeli, R., Akbari, G.A. Ramshini, H 2017. Application of hydrotime model to predict early vigour of rapeseed (Brassica napus L.) under abiotic stresses. Acta Physiologiae Plantarum, 39: 252. [DOI:10.1007/s11738-017-2552-0]
54. Stahl-Biskup, E. and Saez, F., 2002. Thyme: the genus Thymus. London: Taylor & Francis. 348p. [DOI:10.4324/9780203216859]
55. Suliman, M.S.E., Elradi, S.B.M., Zhou, G., Nimir, N.E.A., Zhu, G. and Ali, A.Y.A. 2022. Seeds primed with 5-aminolevulinic acid mitigated temperature and drought stresses of wheat at germination and early seedling growth. Chilean Journal of Agricultural Research, 82(1): 111-123. [DOI:10.4067/S0718-58392022000100111]
56. Tatari, S., Ghaderi-Far, F., Yamchi, A., Siahmarguee, A., Shayanfar, A. and Baskin, C. C. 2020. Application of the hydrotime model to assessseed priming effects on the germination of rapeseed (Brassica napus L.) in response to water stress. Botany, 98: 283-291. [DOI:10.1139/cjb-2019-0192]
57. Torabi, B., Soltani, E., Archontoulis, S.V. and Rabii, A. 2016. Temperature and water potential effects on Carthamus tinctorius L. seed germination: measurements and modeling using hydrothermal and multiplicative approaches. Brazilian Journal of Botany, 39: 427-436.‏ [DOI:10.1007/s40415-015-0243-x]
58. Willenborg, C.J., Wildeman, J.C., Miller, A.K., Rossnagel, B.G. and Shirtliffe, S.J. 2005. Oat germination characteristics differ among genotypes, seed sizes, and osmotic potentials. Crop Science, 45(5): 2023-2029.‏ [DOI:10.2135/cropsci2004.0722]
59. Yousefi, A.R., Rashidi, S., Moradi, P. and Mastinu, A. 2020. Germination and seedling growth responses of Zygophyllum fabago, Salsola kali L. and Atriplex canescens to PEG-induced drought stress. Environments, 7(12): 107-117.‏ [DOI:10.3390/environments7120107]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.