تأثیر سطوح مختلف دما بر رفتار جوانزی زایمان (Foeniculum vulgare Mill.)، شاهدته (Sesamum indicum L.) و کنجد (Cannabis sativa L.)

زنگیلی جیل " " سهراب محمودی۱
دانشجوی کارشناسی ارشد اگراکلیسی، دانشکده کشاورزی، دانشگاه بیرجند
۲ دانشیار دانشکده کشاورزی، دانشگاه بیرجند
پست الکترونیک نویسنده مسئول: Zalipoor2014@yahoo.com

(تاریخ دریافت: ۱۳۹۲/۰۶/۱۵; تاریخ پذیرش: ۱۳۹۲/۰۶/۲۱)

چکیده

با توجه به اهمیت روزافزون گیاهان دارویی در رفع واکنش جوانزی این گیاهان به دما از دیدگاه زراعی حائز اهمیت است. در یک مطالعه آزمایشگاهی، تأثیر دمای حرارتی مختلف بر ویژگی‌های جوانزی بذر گیاهی دارویی زایمان، شاهدته و کنجد، به صورت طرح کاملاً تصادفی با چهار تکرار، مورد بررسی قرار گرفت. برای این منظور تیمارهای درجه حرارت ثابت ۰، ۱۰، ۱۵، ۲۰، ۲۵، ۳۰، ۳۵ و ۴۰ درجه سانتی‌گراد در نظر گرفته شدند. نتایج نشان داد که تأثیر درجه حرارت بر دمای و سرعت جوانزی بذر معمولاً دارد. بذر رایانه در دمای ۲۵ و ۱۰ درجه سانتی‌گراد و بذر کنجد در دمای ۵ درجه سانتی‌گراد جوانزی نداشتند. حداکثر سرعت جوانزی بذر رایانه در دمای ۲۰ درجه و بذر بذر شاهدته و کنجد در دمای ۲۵ درجه سانتی‌گراد به دست آمد. بیشترین درصد جوانزی بذر رایانه و شاهدته و کنجد به ترتیب در دمای ۲۵ و ۳۰ درجه سانتی‌گراد مشاهده شد. کمترین بکر خانگی جوانزی بذر رایانه در دمای ۲۰ درجه سانتی‌گراد و بذر رایانه در شاهدته و کنجد در دمای ۲۵ درجه سانتی‌گراد مشاهده شد. شاخص به جرای شاهدته بذر رایانه و شاهدته در دمای ۲۰ و برابر کنجد در دمای ۳۰ درجه سانتی‌گراد به حداقل مقدار خود رسید. مقدار طول و وزن ریشه‌چه و ساقه‌چه بذر رایانه در آزمایش‌های دما افزایش یافته، در دمای خاصی به حداقل مقدار خود رسیده سپس روند کاهشی داشت. از اطلاعات حاصل از این مطالعه می‌توان برای پیشنهاد ایستگاه جوانزی بذر رایانه و شاهدته دانشمند نشان دهنده و سیاسی از دما انجام می‌شود و نسبت به دو گیاه دیگر حساسیت کمتری به شرایط دمایی دارد. جوانزی بذر رایانه به میزان ۷۵ در می‌آید.

۲۰ درجه سانتی‌گراد. ناجیس بود. بذر کنجد در رنگ دمایی ۱۵ تا ۲۵ درجه جوانزی خوبی داشتند.

واژه‌های کلیدی: بنشه گیاهچه، درصد جوانزی، سرعت جوانزی، بکر خانگی جوانزی

لیست مراجعه شده (علمی، ۱۹۹۷). در حال حاضر کشت گیاهان دارویی شاخص مهمی از کشاورزی و یکی از منابع اصلی استخراج و تولید مواد اولیه برای ساخت داروهای موجود به شمار می‌رود. به همین دلیل در عموم کشورهای پیشرفته مراکز تحقیقاتی خاص گیاهان دارویی تأسیس شده است

۱ Lambert
نیاپی بوده در واحدهای مختلف، و اغلب توسط دما، حتی زمانی که شرایط رطوبت مناسب است، محدود می‌شود (جکن و هافکو، 1989). این فرآیند به‌طور ریشه‌ها و ساقه‌ها و قطب‌های شناسایی و تخم‌گذاری ذخیره شده در مخدر جنینی آغاز می‌شود (آدام، 1999). عوامل محیطی مختلف جمله حرارت و رطوبت، جوانه‌زنی (شامل اثر قرار مدهدردهند) و کودکی و جوانگیری، در جزء حرارت با تأثیری که روی جوانه‌زنشی می‌گذارند، ممکن است برای ارزیابی ویژگی‌های جوانه‌زی با پذیرش استفراغ، جوانه‌زی گیاه می‌تواند به‌طور کلی کما برای انرژی خیلی بین دما و سرعت جوانه‌زنی در برخی گونه‌های گیاه‌زی که در دمای مایع در سطح زمین ویژگی‌های متغیر و ژنتیکی دارد نیست (آدام، 1999). اگر دما روی جوانه‌زی می‌تواند به‌طور مداوم در جزء حرارت بازار بالای شود (کولینگ و مسیونال، 1985)، درجه حرارت‌های کاربردی شامل درجه حرارت حداکثر (درجه حرارت که در کمتر از آن جوانه‌زی صورت نمی‌گیرد)، به‌همین دلیل، درجه حرارت که به‌طور مداوم در جوانه‌زی در کارتن‌های زبان رخ نمی‌دهد و درجه حرارت حداکثر (در برخی از جوانه‌زی‌ها درجه حرارت زمرد جوانه‌زی ضروری برای جوانه‌زی که جوانه‌زی نجات می‌دهد) به عنوان حالت مورد موظف و پویانی‌های ضروری برای جوانه‌زی شناخته شده‌است که به‌روز ارائه کمیپی جوانه‌زی نژاد در گونه‌های گیاهی مورد نیاز می‌باشد (آدام، 1999).

گزارشات مختلف در مورد خصوصیات جوانه‌زی می‌باشد. گونه‌های مختلف گیاهی مهم از گیاهان زراعی، مرتع و دارویی وجود دارد (آدام، 1999; همکاران، 2004; 2007، جامی الحمیدی و کافی، 2007; کامکار، و همکاران، 2006). نتایج تحقیق بیانات‌های بین‌و بین‌گونه‌های جوانه‌زی تعادل‌های دارویی ارتباطی از آن است که بالاترین درصد جوانه‌زی در دامنه ۲۰ تا ۳۰ درجه که این مراکز تحقیقاتی هر روز مواد مورد بهره‌برداری و در شهرزاد ابراهیمی و همکاران (آدام و هیئت، 2004)، یکی از مهم‌ترین گیاهان دارویی، گیاهی قدیمی‌تر است و متعلق به خانواده زبان. این گیاه یکی از چهار گیاه اصلی مصرف جهان است که به‌طور مداوم در تولید و اصلی‌ترین کانی کشت‌کرک گیاه می‌شود (دردزی و حاجی‌بیکی، 1981). رازیانه و باعث از اصل حzas که در فیشر دو گونه‌های مختلف جوامع مختلف در شرایط گیاهی، تاثیر فیشر نشان داده و در فیشر نیز از گیاهی که در زمان صنعت، ممکن است وظایفی از دیگری برای روی داده‌های نشان داده از دیگری برای روی داده‌های نشان D. 1388 (آدام و هیئت، 2004).

بنا شده است که دارای خاصیت ویژه نقش در دندان کاربردی بسیاری دارد. روغن کنجد در جلوگیری از فاسد دانه‌کاربردی از دیگری برای روی داده‌های نشان داده از دیگری برای روی داده‌های نشان D. 1388 (آدام و هیئت، 2004).

بنا شده است که دارای خاصیت ویژه نقش در دندان کاربردی بسیاری دارد. روغن کنجد در جلوگیری از فاسد دانه‌کاربردی از دیگری برای روی داده‌های نشان D. 1388 (آدام و هیئت، 2004).

بنا شده است که دارای خاصیت ویژه نقش در دندان کاربردی بسیاری D. 1388 (آدام و هیئت، 2004).
مواد و روش‌ها

این پژوهش در آزمایشگاه تحقیقاتی دانشکده کشاورزی دانشگاه بیژن‌آباد انجام گردید. آزمایش شامل 8 تیمار دمایی (5، 10، 15، 20، 25، 30، 35 و 40 درجه سانتی‌گراد) در قالب طرح کامل تصادفی با 4 تکرار بود. به ازای هر تکرار، بذر مورد استفاده از آزمایش از شرکت کشاورزی کشت و سمند به‌عنوان شرکت‌بندی شده و در آزمون جوان‌زی بالای بذر انتخاب شد. برای هر تکرار 25 عدد بذر منظور گردید که پس از شمارش و ضعف‌نویسی با محلول اسیدیکریت سدیم به مدت دو دقیقه و سپس شستشوی ابتلا به نیترات دی‌های فلزی به قطع سانس می‌تری استریل شده، حاوی کافی صافی وانیم که توسط آب مقدار کافی مرطوب گردیده بودند، قرار گرفتن و بذر جنوبی از ترکیب رطوبت بی‌پیش‌را، یا بارا رافیق به سمت شدید و بعد از آن در داخل زرمان‌نگار با دمای مورد نظر تحت فیلتر 12/25 ساعت 12 ساعت تاریکی قرار داده شدند. شمارش بذر جوان‌زی روز در ساعت معمول انجام شد. معبیر جوان‌زی خروج رجیم‌چه حداقل یک میلی‌متری بود. شمارش با تعداد 14 روز دوم تا 30 روز به‌صورت موالی انجام شد و در این روز هیچ‌شگاه با استفاده از 10 نمونه تصادفی از هر تیمار، طول رشته‌چه و ساق‌چه، وزن خشک رشته‌چه و ساق‌چه، نیز اندازه گیری شدند.

درصد جوان‌زی برنامه‌های 1 (محاسبه شده توسط و همکاران، 1283. تبیری و همکاران، 1283)،

\[
P = \frac{n}{N} \times 100
\]

در این معادله n تعداد بذر جوان‌زد و N تعداد کل بذر انجام و بذر همگن بوده و اندام‌گیری سرعت جوان‌زی بذر از روش مایگر و با استفاده از معادله (3) صورت گرفت (کربن‌بو و موردابک، 1999).

\[
Rs = \sum \frac{Si}{Di}
\]

(3) سرعت جوان‌زی (تعداد بذر در روز)

\[
Rs = \frac{\text{تعداد بذر جوان‌زد}}{\text{تعداد روز تا شمارش}}
\]

\[
Di = \text{تعداد روز تا شمارش}
\]

سانتی‌گراد برابر پوهنی این تولید و پوهنی البرز به دست آمد. درجه حرارت‌های کاربینال در اسفره به ترتیب 13، 20، 25 و 30 در سیلیکای به ترتیب 9/8 و 26/8 درجه سانتی‌گراد تعیین شدند (تبريزی و همکاران، 1383).

متن‌های درجه حرارت کاربینال معمولاً با به‌صورت مقادیر نتایج تعیین می‌شود و به این‌ویژه تخمین زده می‌شود که بطور نرمال می‌توان برای کاربینال درون یک جمعیت به‌هیچ توصیف معمول داده می‌شود (هاردیگر، 2004، مدارسی ریاضی متعددی برای توصیف الگوی جوان‌زی در واکنش به درجه حرارت از طریق دارند (کربن‌بو و موردابک، 1999). برخی از این مدل‌ها برای پیش‌بینی و انتخاب جوان‌زی تجویز یک نیروی و درجه حرارت کاربینال و ضرایب مدل را برای مقایسه تعدادی نیز پیش‌بینی می‌کنند (فارنکل و همکاران، 2003، هاردیگر، 2006).

مدل درجه حرارت کاربینال جوان‌زی، رگرسیون غیرخطی و روش رگر‌ساز خیاطی دو قطعه‌ای را مورد بررسی قرار داد و نتایج که کشت پیش‌بینی می‌شوند جوان‌زی و زمان جوان‌زی یا می‌توان با استفاده از مدل‌های جراحی که کمترین فضاهای از پیش تعیین شده را دارند، افزایش داد. این (2006) عنوان کرد که مدل‌های درجه حرارت کاربینال کاربردی‌تر دارند.

فرایند اینژیزولوژیکی خاصی همبستگی داشته است؛ بنابراین با توجه به اهمیت راهنماهای و کنترل در صناعه دروسی و همچنین صنایع غذایی و آرایشی و بهداشتی، اصلاح مطالعات و پردازش‌های همبستگی روی این بذر ضرورت داشته تا نیمه کشت و توسعه این گیاهان فراهم شود. این‌را از این مطالعه به‌منظور مساحتی نامه حاصلی مانندپی جوان‌زی و شناسایی رابطه بین درجه حرارت و سرعت جوان‌زی بذر گیاهان دارویی را به داشته و کنترل انجام شد.

1. Hardegree
2. Kebreab and Murdochh
3. Pharytal
4. Allen
شاخص بنی گیاهی بر اساس معادله (3) محاسبه شد (علیزاده و عسونی، 1382).
(3) میزان نرخ = (میلیمتر طول ریشه) × (میلیمتر طول ساقه) × (مقدار جوانه‌زی) × (جنسیت جوانه‌زی)

پیگذشی جوانه‌زی نیز با کاربرد نرم‌افزار Statgraphics محسوب می‌شود. نسبت اول مورد محاسبه قرار گرفت (سلطانی و همکاران، 1381).

تجزیه و تحلیل آماری داده‌ها با استفاده از نرم‌افزار تجزیه‌تحلیل آماری (SAS) و به‌کارگیری تست مانند LSD بود.

نتایج و بحث

سرعت جوانه‌زی

مقایسه میانگین داده‌های مربوط به سرعت جوانه‌زی بذر نشان داد که بین سرعت جوانه‌زی بذور مختلف در درجه حرارت‌های مختلف از لحاظ آماری اختلاف معنی‌داری (p < 0.05) داشت (جدول 1). برای بذر رازی‌های بذر در دمای 5 و 10 درجه سانتی‌گراد جوانه‌زی صورت نگرفت. در دمای 10 درجه سانتی‌گراد با افزایش دما سرعت جوانه‌زی افزایش یافت ولی در 30 درجه سانتی‌گراد با 40 درجه سانتی‌گراد به حداقل مقدار خود رسید و در این اختلاف از لحاظ آماری معنی‌دار بود (جدول 2). در همه شاهدات بیشترین سرعت جوانه‌زی در دمای 25 درجه سانتی‌گراد مشاهده شد و سرعت بذر در سایر دمای‌ها اختلاف معنی‌داری نداشت (جدول 3). با افزایش دما سرعت جوانه‌زی بذر کمتر افزایش یافت ولی بیشترین سرعت جوانه‌زی این بذور در دمای 25 درجه سانتی‌گراد اتفاق افتاد ولی با افزایش دما از دمای 25 درجه سانتی‌گراد سرعت جوانه‌زی روند کاهشی را پیش گرفت (جدول 4).

درجه حرارت سرعت واکنش‌های شیمیایی را تحت تأثیر قرار می‌دهد و از آنجا که جوانه‌زی شامل فراگریده‌های آزمایشی مندیدی از نوع کانتانولیس و آنتیوانولیس می‌باشد، بنابراین به‌عنوان نسبت به درجه حرارت واکنش نشان می‌دهد. در نتیجه سرعت جوانه‌زی

1 Statistical Analysis System

2 Iannucci
جدول 1- میانگین مربعات حاصل از تجزیه واریانس داده‌ها مربوط به صفات جوانمرنگی سه نوع بذر (شاهداهن، رازیهانه و کنجد).

<table>
<thead>
<tr>
<th>نوع بذر</th>
<th>تغییرات</th>
<th>درجه جوانمرنگی</th>
<th>سرعت رشد</th>
<th>رنگ رشته‌های گیاهی</th>
<th>وزن خشک رشته‌های گیاهی</th>
<th>وزن خشک ساقه‌های جوانمرنگی</th>
<th>تکوانستگی</th>
<th>پیکروخیزی</th>
</tr>
</thead>
<tbody>
<tr>
<td>دما</td>
<td>7</td>
<td>12/23</td>
<td>1748/65</td>
<td>15/14</td>
<td>15/17</td>
<td>4588/59</td>
<td>193/85</td>
<td>7/9</td>
</tr>
<tr>
<td>خطا</td>
<td>24</td>
<td>6/19</td>
<td>168/50</td>
<td>1/9</td>
<td>9/20</td>
<td>184/47</td>
<td>2/16</td>
<td>1/2</td>
</tr>
<tr>
<td>رازیهانه</td>
<td>22</td>
<td>9/1</td>
<td>291/5</td>
<td>24</td>
<td>23/8</td>
<td>7/9</td>
<td>11/3</td>
<td>7/9</td>
</tr>
<tr>
<td>ضریب تغییرات (درصد)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>دما</td>
<td>7</td>
<td>11/0</td>
<td>3581/2</td>
<td>21/2</td>
<td>29/4</td>
<td>161/8</td>
<td>20/8</td>
<td>25/4</td>
</tr>
<tr>
<td>خطا</td>
<td>24</td>
<td>2/0</td>
<td>126/8</td>
<td>21/2</td>
<td>29/4</td>
<td>161/8</td>
<td>20/8</td>
<td>25/4</td>
</tr>
<tr>
<td>کنجد</td>
<td>24</td>
<td>2/0</td>
<td>126/8</td>
<td>21/2</td>
<td>29/4</td>
<td>161/8</td>
<td>20/8</td>
<td>25/4</td>
</tr>
<tr>
<td>ضریب تغییرات (درصد)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

درصد جوانمرنگی

تأثیر دما بر درصد جوانمرنگی بذر رازیهانه معمدی‌داری بود (0/03=0). در دمای 5 درجه سانتی‌گراد جوانمرنگی انجام نشد. با افزایش دما از 10 درجه سانتی‌گراد درصد جوانمرنگی افزایش یافته و با 20 درجه سانتی‌گراد درصد 20 درجه سانتی‌گراد جوانمرنگی روند نزولی داشته‌تا در دمای 25 درجه سانتی‌گراد به صفر رسید (شکل 1 و جدول 2). در بذر شاهداهن درصد جوانمرنگی در دمای‌های 35تا 0 درجه سانتی‌گراد اختلاف معنی‌داری نداشته و دمای 40 درجه سانتی‌گراد باعث کاهش درصد جوانمرنگی شد (شکل 2 و جدول 2). در محدوده دمایی 15تا 20 درجه سانتی‌گراد حداقل درصد جوانمرنگی بذر انواع شاهداهن شد و دمای‌های کمتر و بیشتر از این...
تأثیر دما بر طول ریشه‌چه و ساقه‌چه

عمل دمایی متقابل طول ریشه‌چه و ساقه‌چه رازیانه از بهصورت معنی‌دار (p<0.05) تحت تأثیر قرار داد (جدول 1). افزایش دما از 10 درجه سانتی‌گراد تا 35 درجه سانتی‌گراد طول ریشه‌چه رازیانه افزایش یافته‌اند. در دمای 15 درجه سانتی‌گراد به دلیل افزایش مقدار خود (30 میلی‌متر) ریشه‌چه اختلاف معنی‌داری مشاهده نمود. در دمای 20 درجه سانتی‌گراد طول ریشه‌چه مجدداً کاهش یافته و در دمای 25 و 30 درجه سانتی‌گراد مشاهده شد. با افزایش دما از 10 درجه سانتی‌گراد طول ساقه‌چه رازیانه کاهش یافته و مقدار طول ساقه‌چه در دمای 20 درجه سانتی‌گراد مشاهده شد (میلی‌متر). با افزایش دما از 20 درجه سانتی‌گراد طول ساقه‌چه رازیانه روند تنزلی داشت (طول ساقه‌چه در دمای 25 و 30 درجه سانتی‌گراد اختلاف معنی‌داری نداشت). بیشترین طول ساقه‌چه بدور شاهدگی در دمای 20 درجه سانتی‌گراد و در بیشترین کننده در دامنه دمایی 25 تا 35 درجه سانتی‌گراد مشاهده شد (جدول 3 و 4).

درجه حرارت پایین و اختلال در فعالیت آنزیم‌ها در درجه حرارت بالا (تاناتور) شدن ساختمان سباعدی آنزیم‌ها، علت اصلی کاهش درصد جوانگزی در درجه حرارت بالا و پایین در این آزمایش است.

GMax زیلانی و همکاران (1384) بیشترین مقادیر گند را در دمای 12 تا 15 درجه گزارش کردند. لطفی و همکاران (1382) (الکرمان) در دمای 15 درجه سانتی‌گراد باعث کاهش معنی‌دار حداکثر جوانگزی در بذر کلزا شدند، بهطوری که کمترین جوانگزی در دمای 5 درجه و بیشترین جوانگزی در دمای 15 و 20 درجه سانتی‌گراد انجام شد. یکی از مزایای افزایش درصد جوانگزی بذر کلزا گزارش شد و با افزایش کاهش دما از این محدوده حرارتی درصد جوانگزی بذر کلزا واقع می‌شود.

کویلد و مکدونالد (1995) علت نبود وقف جوانگزی در دمای حداکثر را نغییر پروتئین‌های ضروری جوانگزی اعلام کردند. دمای بالا علاوه بر کاهش سرعت جوانگزی بسیار زوال نزدیک می‌شود (هادرز، 1986). بیشترین درصد جوانگزی بذر گیاه دارویی شریرینی‌بان در دمای 15 تا 30 درجه سانتی‌گراد گزارش شد.

درجه حرارت پایین و اختلال در فعالیت آنزیم‌ها در درجه حرارت بالا (تاناتور) شدن ساختمان سباعدی آنزیم‌ها، علت اصلی کاهش درصد جوانگزی در درجه حرارت بالا و پایین در این آزمایش است.

1 Denaturation
2 Ali
3 Mcneil & Duran

下載自yujs.yu.ac.ir at 4:31 +0330 on Tuesday December 10th 2019 [DOI: 10.29252/yujs.2.1.37]
جدول ۲- مقایسه میانگین‌های شاخص‌های جوانانی‌کیه راه‌اندیش در سطوح مختلف دما

<table>
<thead>
<tr>
<th>سطح دما (درجه)</th>
<th>سرعت جوانانی‌کیه (گیاهی) (میلی‌گرم)</th>
<th>درصد جوانانی‌کیه (درجه بندی) (زاری)</th>
<th>طول رشد‌جمهوری (میلی‌گرم)</th>
<th>وزن شاخک ساقه‌جمهوری (میلی‌گرم)</th>
<th>وزن شاخک جوانانی‌کیه (میلی‌گرم)</th>
</tr>
</thead>
</table>
| جدول ۲- مقایسه میانگین‌های شاخص‌های جوانانی‌کیه راه‌اندیش در سطوح مختلف دما

<table>
<thead>
<tr>
<th>سطح دما (درجه)</th>
<th>سرعت جوانانی‌کیه (گیاهی) (میلی‌گرم)</th>
<th>درصد جوانانی‌کیه (درجه بندی) (زاری)</th>
<th>طول رشد‌جمهوری (میلی‌گرم)</th>
<th>وزن شاخک ساقه‌جمهوری (میلی‌گرم)</th>
<th>وزن شاخک جوانانی‌کیه (میلی‌گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰</td>
<td>۱۱۱</td>
<td>۱۱۲</td>
<td>۱۱۳</td>
<td>۱۱۴</td>
<td>۱۱۵</td>
</tr>
</tbody>
</table>

۱. Huang

۲. Kyauk
تأثیر دمای بر پنجه گیاهچه

نتایج آزمایش نشان داد تأثیر دمای بر پنجه گیاهچه برای ربات های مختلف مختلف دمای آزمایش گردیده است. در دمای 15 و 16 درجه سانتی گراد بر روی گیاهچه تغییرات اختلاف معنی‌داری نشان داد. در دمای 20 درجه سانتی گراد به حداکثر مقدار خود رسید. در دمای 20 درجه سانتی گراد مقدار به دست آمده‌ای که گیاهچه افزایش یافته و در دمای 25 درجه سانتی گراد به حداکثر مقدار خود رسید. در دمای 25 درجه سانتی گراد مقدار به دست آمده‌ای که پنجه گیاهچه کاهش یافته است.

تأثیر دمای بر وزن خشک گیاهچه و ساقه‌چه

کاربرد مشاهده متنوع تأثیر منعی داری (p<0.01) بر وزن خشک گیاهچه و ساقه‌چه ربات های بازیافتی داشته (جدول 1) در دمای 75 و 30 درجه سانتی گراد به حداکثر وزن خشک ربات های بازیافتی داشته (جدول 2). در کنار بیشترین پنجه گیاهچه در دمای 30 درجه سانتی گراد حالت و دمای بازیافت و کمتر به ساقه‌چه کاهش یافته (جدول 4). در این نمونه و همکاران (2010) اعلام کردند بذر، سرعت درونی و توانیده بر سرعت افزایش به ابزار می‌باشد. می‌باشد و عوامل محیطی مثل درجه حرارت و رطوبت خاک، تأثیرات دامئولوگی داشته باشد. گیاهچه که رحمی و کاپی (1389) در گیاه خرپه انگل دادن بیشترین شاخص دمای گیاهچه خلفی در دمای 40 درجه سانتی گراد مشاهده گردید. ولی فاوت نوعی دارای در دمای 25 درجه سانتی گراد در این شاخص نداشت.

تأثیر دمای بر وزن خشک گیاهچه و ساقه‌چه

ناک (2015/2016) مشاهده شد. با افزایش دمای از 10 درجه سانتی گراد وزن خشک گیاهچه و ساقه‌چه روند صعودی داشته که در 30 درجه سانتی گراد به حداکثر مقدار خود رسید و با افزایش دمای از 20 درجه سانتی گراد وزن خشک گیاهچه و ساقه‌چه مجدداً کاهش یافته تا در دمای 20 درجه سانتی گراد به حداکثر مقدار خود رسید. در دمای 25 درجه سانتی گراد وزن خشک گیاهچه و در دمای 30 درجه سانتی گراد بیشترین وزن خشک گیاهچه بر روی پنجه گیاهچه مشاهده شد (جدول 3). در بذر نکند بیشترین وزن خشک گیاهچه و ساقه‌چه در دمای 25 درجه سانتی گراد مشاهده شد (جدول 4).

\[\text{Seiler}\]
جهلو ۳- مقایسه میانگین‌های شاخص‌های جوان‌زایی گیاه‌شناسانی در سطوح مختلف دما

<table>
<thead>
<tr>
<th>سطوح دما (گراد)</th>
<th>سرعت جوان‌زایی</th>
<th>درصد جوان‌زایی</th>
<th>شاخص بی‌ه (میلی‌گرم)</th>
<th>طول رشد (میلی‌گرم)</th>
<th>وزن خشک جوان‌زایی</th>
<th>وزن خشک ساقه‌چه</th>
<th>وزن خشک پکوانا‌خی (روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۵ c</td>
<td>۰/۵ e</td>
<td>D</td>
<td>۱۳/۱ de</td>
<td>۱۵/۲ de</td>
<td>۸۲/ ef</td>
<td>۸۲/ ef</td>
<td>۸۳/ a</td>
</tr>
<tr>
<td>۰/۵ D</td>
<td>۰/۵ e</td>
<td>D</td>
<td>۱۳/۱ de</td>
<td>۱۵/۲ de</td>
<td>۸۲/ ef</td>
<td>۸۲/ ef</td>
<td>۸۳/ a</td>
</tr>
<tr>
<td>۱/۶ e</td>
<td>۱/۶ c</td>
<td>E</td>
<td>۱۳/۱ de</td>
<td>۱۵/۲ de</td>
<td>۸۲/ ef</td>
<td>۸۲/ ef</td>
<td>۸۳/ a</td>
</tr>
<tr>
<td>۱/۶ a</td>
<td>۱/۶ a</td>
<td>D</td>
<td>۱۳/۱ de</td>
<td>۱۵/۲ de</td>
<td>۸۲/ ef</td>
<td>۸۲/ ef</td>
<td>۸۳/ a</td>
</tr>
<tr>
<td>۲/۵ D</td>
<td>۲/۵ a</td>
<td>۲/۵ b</td>
<td>۱۳/۱ de</td>
<td>۱۵/۲ de</td>
<td>۸۲/ ef</td>
<td>۸۲/ ef</td>
<td>۸۳/ a</td>
</tr>
<tr>
<td>۲/۵ D</td>
<td>۲/۵ a</td>
<td>۲/۵ b</td>
<td>۱۳/۱ de</td>
<td>۱۵/۲ de</td>
<td>۸۲/ ef</td>
<td>۸۲/ ef</td>
<td>۸۳/ a</td>
</tr>
<tr>
<td>۳/۵ D</td>
<td>۳/۵ a</td>
<td>۳/۵ b</td>
<td>۱۳/۱ de</td>
<td>۱۵/۲ de</td>
<td>۸۲/ ef</td>
<td>۸۲/ ef</td>
<td>۸۳/ a</td>
</tr>
<tr>
<td>۳/۵ D</td>
<td>۳/۵ a</td>
<td>۳/۵ b</td>
<td>۱۳/۱ de</td>
<td>۱۵/۲ de</td>
<td>۸۲/ ef</td>
<td>۸۲/ ef</td>
<td>۸۳/ a</td>
</tr>
<tr>
<td>۴/۵ D</td>
<td>۴/۵ a</td>
<td>۴/۵ b</td>
<td>۱۳/۱ de</td>
<td>۱۵/۲ de</td>
<td>۸۲/ ef</td>
<td>۸۲/ ef</td>
<td>۸۳/ a</td>
</tr>
</tbody>
</table>

در هر سطح میانگین‌های که دارای جدایی که حرف مشترک هستند، فاقد ناوت معنی‌دار در سطح احتمال ۵٪ درصد به روش LSD می‌باشند.

شکل ۲- تأثیر دما بر درصد جوان‌زایی گیاه‌شناسانی
جدول ۴ - مقایسه میانگین‌های شاخص‌های جوانه‌زنی گیاه کنجد در سطوح مختلف دما

<table>
<thead>
<tr>
<th>سطح دما (سانتی‌گراد)</th>
<th>درصد جوانه‌زنی جوانه‌زنی شاخص بینه گیاهی سرعت جوانه‌زنی (تعداد پر در روز)</th>
<th>طول ریشه (میلی‌متر)</th>
<th>وزن خشک ریشه (گرم)</th>
<th>وزن خشک ساقه (گرم)</th>
<th>طول (میلی‌متر)</th>
<th>وزن خشک گیاه (گرم)</th>
<th>وزن خشک ساقه جوانه‌زنی (گرم)</th>
<th>میانگین گیاه‌زنی (روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>۳۱ ۲ ۹</td>
<td>۳۳ ۲</td>
<td>۳۳ ۲</td>
<td>۳۴ ۳</td>
<td>۳۴ ۳</td>
<td>۳۴ ۳</td>
<td>۳۴ ۳</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۳۱ ۲</td>
<td>۳۳ ۲</td>
<td>۳۳ ۲</td>
<td>۳۴ ۳</td>
<td>۳۴ ۳</td>
<td>۳۴ ۳</td>
<td>۳۴ ۳</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۳۱ ۲</td>
<td>۳۳ ۲</td>
<td>۳۳ ۲</td>
<td>۳۴ ۳</td>
<td>۳۴ ۳</td>
<td>۳۴ ۳</td>
<td>۳۴ ۳</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۳۱ ۲</td>
<td>۳۳ ۲</td>
<td>۳۳ ۲</td>
<td>۳۴ ۳</td>
<td>۳۴ ۳</td>
<td>۳۴ ۳</td>
<td>۳۴ ۳</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۳۱ ۲</td>
<td>۳۳ ۲</td>
<td>۳۳ ۲</td>
<td>۳۴ ۳</td>
<td>۳۴ ۳</td>
<td>۳۴ ۳</td>
<td>۳۴ ۳</td>
</tr>
</tbody>
</table>

در هر ستون میانگین‌هایی که دارای حداکثر یک حرف مشترک هستند، فاقد تفاوت معنی‌دار در سطح احتمال پنج درصد به روش LSD می‌باشند.

شکل ۳ - تأثیر دما بر درصد جوانه‌زنی بذر کنجد

\[f(x) = \exp(-0.5 \times \text{abs}(x)) \]

\[R^2 = 0.96 \]
تایید دما بر یکنواختی جوانه‌زنی

تأیید دمای بر یکنواختی جوانه‌زنی بذر رزانته،
معنی‌دار (0.01-0.05) بود (جدول 1). یکنواختی
جوانه‌زنی در محدوده دمایی ۱۰ تا ۳۰ درجه
سانتی‌گراد گرفت و افزایش و کاهش دما از این
مقدار، جوانه‌زنی را به طور معنی‌داری کاهش داد.

درصد جوانه‌زنی وجود نداشت. به نظر می‌رسد جوانه‌زنی
زاریان به دما حساس تر است بطوری که حداکثر
جوانه‌زنی (۸۲ درصد) تنها در دمای ۲۰ درجه
سانتی‌گراد صورت گرفت و افزایش و کاهش دما از این
مقدار، جوانه‌زنی را به طور معنی‌داری کاهش داد.

جدول ۱

<table>
<thead>
<tr>
<th>دمای سانتی‌گراد</th>
<th>مقدار جوانه‌زنی</th>
<th>معنی‌داری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰</td>
<td>۳۰</td>
<td>۵۰</td>
</tr>
</tbody>
</table>

Germination uniformity
علی‌پور و محمودی: ارتباط تأثیر سطوح مختلف دما بر رفتار جوانانه رازیانه، شاهدانه و کنجد

منابع

احمدی، م. و بحرانی، م.چ. 1386. تأثیر مقادیر مختلف نیتروژن بر عملکرد و اجزای عملکرد و میزان روغن دانه اقاق کنجد در منطقه بوشهر. مجله علوم و فناون کشاورزی و منابع طبیعی. 13: ۱۲۱-۱۳۱.

تیربیژی، ل. کوچکی، ع. نصیری محلاتی، م. و رضوانی مقدم، ب. 1386. ارتباط خصوصیات جوانانه بذر و دوده رازیا و طبیعی آبیاک خراسانی (Thymus transcaucasicus). مجله پژوهش‌های زراعی ایران. 2(۱): ۴۲۹-۴۳۹.

تیربیژی، ل. نصیری محلاتی، م. و کوچکی، ع. 1386. ارتباط حشره حشره‌های کاردینال جوانانه دو گونه استفرزه و پسیلیوم. مجله پژوهش‌های زراعی ایران. 2(۴۰-۱۵۰.

درزی، م. و حاج سید مهدی، م. 1381. بررسی سیستم زراعی و اکولوژی دو گیاه دارویی بابونه و رازیانه. مجله زیتون، ۴(۱۲۴-۴۳).

رحیمی، ز. و کافی، م. 1389. ارتباط درجه حشره‌های کاردینال و تأثیر سطوح مختلف دما بر شاخه‌های جوانانه گیاه خرقصه (Portulaca oleracea L.). نشریه حفاظت گیاهی، 1(۴): ۸۰-۹۳.

رحیمیان مشهدی، ح.، بارقی، ع. و پریابی، آ. 1370. اثر پنتاسولهای مختلف حاصل از پاتیلین گلیکول و کلرور سدیم توماً با درجه حشره گیاهانی دو گونه دیما در مجله علوم و منابع کشاورزی. 1(۳): ۴۷-۶۲.

زابلی، آ. سلطانی، آ. د. کوچکی، ع. و ساداتی، س. ج. 1389. دمایه کاردینال، واکنش به دما و دامنه بردازداری دما بذر جوانانه گیاهان (Triticum aestivum L. و (Eruca sativa L. و (Althiissima L. در دارویی و معطر ایران. ۵(۴۰-۱۵۰.

قبری، ع. و رحیمیان مشهدی، ح. نصیری محلاتی، م. و کافی، م. 1384. جنبه‌های اکوپزیولوژیکی جوانانه (Glycyrhiza glabra L.) در واکنش به دما، مجله پژوهش‌های زراعی ایران. ۳(۲): ۲۶۲-۲۷۵.

کوچکی، ع. و رضوانی مقدم، ب. 1386. خصوصیات جوانانه ها (ترجمه). انتشارات چهاردانشگاه دانشگاه فردوسی مشهد، صفحه ۱۶۵-۱۷۰.

کوچکی، ع. و مؤمن شاهراهی، ح. 1375. اثر دیاسمول آب و اندازه بذر بر خصوصیات جوانانه بذر نخود (Cicer arrietinum) مجله بیابان. ۴(۳) ۶۸-۷۳.

کوچکی، ع. راشد محصول، م. نصیری محلاتی، م. و صدراکی، ر. 13۶۷. مبانی اکوپزیولوژیکی رشد و نمو گیاهان زراعی (ترجمه). انتشارات آستان قدس رضوی، صفحه ۴۰۴.

لطفی، ن. سلطانی، آ. و بارقی، ع. 1382. تأثیر دما بر مؤلفه‌های جوانانه اقاق کنجد. مجله علوم کشاورزی ایران. ۲(۳۵): ۲۳۴-۲۳۷.

محمودی، ع. سلطانی، آ. و بارقی، ع. 13۸۷. واکنش جوانانه یونجه حلقوی (Medicago scutellata L. به دما. مجله الکترونیک تولید گیاهان زراعی. ۱(۱): ۵۳-۶۲.
Cannabis sativa L.)

Ferula gumaso

Nepeta binaludensis Jamz

Lesquerella

Medicago sativa L.

Orobanche

Panicum miliaceum

Pennisetum glaucum

Setaria italica

Sesamum indicum L.

Germination properties of some wild medicinal plants from Iran. Seed Technology, 28: 80-86.

Temperature requirements for seed germination in four annual clovers grown under two irrigation treatments. Seed Science and Technology, 28(1): 59-66.

Effect of temperature and presoaking on germination root length and shoot length of sesame (Sesamus indicum L.). Environmental and Experimental Botany, 35(3): 345-351.

Germination properties of some wild medicinal plants from Iran. Seed Technology, 28: 80-86.

Temperature requirements for seed germination in four annual clovers grown under two irrigation treatments. Seed Science and Technology, 28(1): 59-66.

Effect of temperature and presoaking on germination root length and shoot length of sesame (Sesamus indicum L.). Environmental and Experimental Botany, 35(3): 345-351.

Effect of Different Temperature on Germination Properties of Fennel (*Foeniculum vulgare* Mill.), Cannabis (*Cannabis sativa* L.) and Sesame (*Sesamus indicum* L.)

Zeinab Alipoor¹, *, Sohrab Mahmodi²

¹ M.Sc. Student, Agroecology, Faculty of Agriculture, Birjand University, Birjand, Iran
² Associate Professor, Faculty of Agriculture, Birjand University, Birjand, Iran
Corresponding author, E-mail address: Zalipoor2014@yahoo.com

(Received: 2014.09.22 ; Accepted: 2015.03.06)

Abstract

Due to importance of medicinal plants, understanding the seed germination response to temperature is agronomically important. A laboratory study was conducted to investigate the effect of different temperatures on seed germination of fennel, cannabis and sesame in a completely randomized design with four replications. Various constant temperatures (5, 10, 15, 20, 25, 30, 35 and 40° C) were considered. According to the results, the effect of temperature on germination rate and percentage in all species was significant. The seeds of fennel were not germinated in 5, 35 and 40° C and seeds of sesame germinated only in 5° C. Maximum rate of germination obtained in 30° C for fennel and 25° C for sesame and cannabis. The highest germination percentage of fennel, and cannabis and sesame were in 20, 25 and 30° C respectively. The lowest of germination uniformity (GU) were observed in 20° C for fennel and in 15° C for cannabis and sesame. Amount of seedling vigor maximized for fennel and cannabis in 25° C and for sesame in the 30° C. The values of length and weight of radical and plumule were enhanced with increase of temperature and record on maximum in special temperature and then reduced slowly. The quantitative information provided by this study can be used in prediction of emergence under diverse temperature conditions. Germination of cannabis seeds occurred in a wide range of temperatures and this seed are less sensitive to temperature compared to the other two plants. Germination of fennel seeds was less, except at 20° C. The sesame seeds had good germination at 15-35° C.

Keywords: Seedling vigor, Germination percentage, Germination rate, Germination uniformity