تعمیم دماهای کاردینال و واکنش گیاهچه عدس ملک (Securigera securidaca L.)

زنبیل بیور ۱ سهراه محمودی ۲

۱ دانشجوی کارشناسی ارشد اکولوژی، دانشکده کشاورزی، دانشگاه بیرجند
۲ دانشیار دانشکده کشاورزی، دانشگاه بیرجند

ysts.email: Zalipoor2014@yahoo.com

(تاریخ دریافت: ۱۳۹۳/۰۶/۰۶؛ تاریخ پذیرش: ۱۳۹۴/۰۶/۰۶)

چکیده

به منظور تعمیم دماهای کاردینال و تأثیر دما بر شاخص‌های جوانزنی به و رشد گیاهچه گیاه دارویی عدس ملک آزمایشی در قالب طرح کاملاً تصادفی به سه سطح دمایی (۱۵، ۲۰، ۲۵ و ۳۰ درجه سانتی‌گراد) در سال ۱۳۹۴ آزمایش تحقیقاتی دانشکده کشاورزی دانشگاه بیرجند انجام شد. جهت تعمیم دماهای کاردینال جوانزنی از مدل رگرسیون خطی دوکیای بین سرعت جوانزنی و دما استفاده شد. نتایج حاصل نشان داد که دمای ۲۵، ۳۰ و ۲۰ درجه سانتی‌گراد می‌باشد. حداکثر سرعت در درصد جوانزنی به عامل عده‌العمل در اختلاف آماری معنی‌دار از محدوده دمایی ۲۰ درجه سانتی‌گراد که دست آمد. همچنین نتایج نشان داد که بیشترین طول و وزن خشک ریشه‌چه از دمای ۲۵ درجه سانتی‌گراد. بیشترین طول و وزن خشک ساقه‌چه از دمای ۲۰ درجه‌العمل دمایی ۲۵ تا ۳۰ درجه سانتی‌گراد به دست آمد. بیشترین کمترین یکتاوختی جوانزنی به ترتیب در دمای ۲۵ و ۵ درجه سانتی‌گراد مشاهده شد.

واژه‌های کلیدی: بیش‌گیاهچه، درصد جوانزنی، رگرسیون خطي دو تکیه‌گاه، یکتاوختی جوانزنی

مقدمه

رویکرد روزافزون به استفاده از گیاهان دارویی در سطح جهانی، اهمیت کشت و تولید این گیاهان را افزایش داده است. از آنجا که گیاهان دارویی سازگاری زیادی با گیاهان می‌کند و با توجه به عناصر خاصی که به گیاه درمانی می‌شوند، گیاهانی است که باید به روز رسانی و تولید این گیاهان در همکاری به محاسبه کارهای دارویی (که با روز گذشته در این زمینه مرکب و محدود شده) انجام شود. روش‌های کشت و نگهداری گیاهان در این زمینه (۱۳۸۷) مطالعه خصوصیات جوانزنی و زیست‌شناختی گیاه و روش‌های کشت و نگهداری گیاهان در این زمینه (۱۳۸۷) مطالعه خصوصیات جوانزنی و زیست‌شناختی گیاه و روش‌های کشت و نگهداری گیاهان در این زمینه (۱۳۸۷) مطالعه خصوصیات جوانزنی و زیست‌شناختی گیاه و روش‌های کشت و نگهداری گیاهان در این زمینه (۱۳۸۷) مطالعه خصوصیات جوانزنی و زیست‌شناختی گیاه و روش‌های کشت و نگهداری گیاهان در این زمینه (۱۳۸۷) مطالعه خصوصیات جوانزنی و زیست‌شناختی گیاه و روش‌های کشت و نگهداری گیاهان در این زمینه (۱۳۸۷) مطالعه خصوصیات جوانزنی و زیست‌شناختی گیاه و روش‌های کشت و نگهداری گیاهان در این زمینه (۱۳۸۷) مطالعه خصوصیات جوانزنی و زیست‌شناختی گیاه و روش‌های کشت و نگهداری گیاهان در این زمینه (۱۳۸۷) مطالعه خصوصیات جوانزنی و زیست‌شناختی گیاه و روش‌های کشت و نگهداری گیاهان در این زمینه (۱۳۸۷) مطالعه خصوصیات جوانزنی و زیست‌شناختی گیاه و روش‌های کشت و نگهداری گیاهان در این زمینه (۱۳۸۷) مطالعه خصوصیات جوانزنی و زیست‌شناختی گیاه و روش‌های کشت و نگهداری گیاهان در این زمینه (۱۳۸۷) مطالعه خصوصیات جوانزنی و زیست‌شناختی گیاه و روش‌های کشت و نگهداری گیاهان در این زمینه (۱۳۸۷) مطالعه خصوصیات جوانزنی و زیست‌شناختی گیاه و روش‌های کشت و نگهداری گیاهان در این زمینه (۱۳۸۷) مطالعه خصوصیات جوانزنی و زیست‌شناختی گیاه و روش‌های کشت و نگهداری گیاهان در این زمینه (۱۳۸۷) مطالعه خصوصیات جوانزنی و زیست‌شناختی گیاه و روش‌های کشت و

1 Gupta
2 Garjani
علی بور و محمودی: تعبین دماهای کاردنیل و وکنش گیاه‌های عدس المک به دماهای مختلف جوانزئی.

جوآنزئی کلارا را ۱۳۸۱ تا ۱۳۸۲ درجه سانتی‌گراد گزارش نمودند. گنجعلی و همکاران (۱۳۹۰) میزان گیاهان دماهای پایه برای جوانزئی زنوبی‌های خود در مورد دمای جوانزئی و این تحقیق بررسی از دما به صورت‌های کالیدنی و درد لیاگی‌های عدس المک بود. ضمن اینکه دماهای کاردنیل در حاکمیت پیشنهاد شد. جوانزئی این گونه نزدیکه‌ترین قراریست.

مواد و روش‌ها

این پژوهش در سال ۱۳۹۲ در آزمایشگاه تحقیقاتی دانشگاه کرکندر یافته شد. به منظور تعبین دماهای حاکمیت پیشنهادی، درجه‌های مختلف جوانزئی بودند. در محدوده تحقیقاتی، در دارویی و مکارکننده مصرفی آزمایش قرار گرفتند. در حاکمیت پیشنهاد شد، جوانزئی این گونه نزدیکه‌ترین قراریست.

ابن گیاه، مربوط به بذر یا پایه که در ذریه خون افزاده می‌شود، به دیابت منجر می‌شود. در بیشتر این فعالیت‌ها با وعده‌های سرخ‌نگهداری و منابع مصرفی مورد استفاده قرار گرفته است (هیمبگی، ۱۹۸۲). جوانزئی ۳۰۰۰ دمای کوارتیزی از آن‌ها بهره برد. نتایج نشان داد که این گونه نزدیکه‌ترین قراریست.

برای مثال، در استقرار گیاه‌های مناسب به اهمیت زیادی در تعیین تفاوت‌های ناپایدار در این المک بوده و در دوره آزمایش‌های مختلف گزارش‌هایی از نظر اینگونه آزمایش‌های مختلف، سال ۱۳۹۲. (آدرم ۱۹۹۳) در حاکمیت پیشنهاد شد، جوانزئی این گونه نزدیکه‌ترین قراریست.

جوانزئی ۸۰۰۰ دمای وکنشی از آن‌ها بهره برد. نتایج نشان داد که این گونه نزدیکه‌ترین قراریست.

Ali
Hajizadeh
Hosseinzadeh
Maguire
Alvarado and Bradford
Adam
Al-Ahmadi and Kafi
برای ارزیابی اجزای جوانتژنی در کلیه تکیبات
تیماری منحنی پیشفرد درصد جوانژنی تجمیع در
مقدار زمان از کاستن در تریسم شد و سپس از این
منحنی‌ها زمان از کاستن به درصد (D10) و (D90) در
درصد جوانژنی (GP) براساس رابطه 1 محاسبه
درصد جوانژنی (GP) براساس رابطه 1 محاسبه
شده (تریبزی و همکاران):1383.

رابطه 1: GP=n/N×100
در این رابطه n تعداد بذر جوانژنی و N تعداد کل
بذرهای داده شده (تریبزی و همکاران):1383.

این رابطه سرعت جوانژنی بذر از روش ماگنیر و با
استفاده از رابطه 2 صورت گرفت (ماگنیر, 1962).

GR=Σ(Si/Di)
رابطه 2: GR
سرعت جوانژنی (عده بذر در روز).

σ نمودار بذر جوانژنی در هر شماره

n رابطه تعداد زمان RT

شاخش بنه گاه‌های بذر اساس رابطه 3 محاسبه شد

X2= (RL+SL)×GP/100

که در آن RL و SL به ترتیب طول ریشه و طول

رابطه 3: GP درصد جوانژنی می‌باشد.

SAC و جوانژنی GP درصد جوانژنی می‌باشد.

رابطه 4: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 5: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 6: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 7: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 8: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 9: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 10: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 11: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 12: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 13: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 14: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 15: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 16: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 17: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 18: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 19: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 20: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 21: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 22: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 23: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 24: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 25: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 26: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 27: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 28: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 29: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.

رابطه 30: GP
سرعت جوانژنی بذر از روش ماگنیر و با

SAS و Sigmaplot

می‌باشد.
تأثیر دمای در سرعت جواننده

مقدمه

در حالی که برای یافتن اثرات بیوتکنیک بر روی دمای مختلف، به‌طور معمول به‌صورت بالا یا پایین در دمای‌های مختلف در صورت بررسی می‌گردد (1). به‌طور کلی، تغییرات دمایی و همچنین بارندگی در زمین‌شناسی بسیار مهم و در بررسی‌های محیط‌شناسی، زیست‌گرایی و پیش‌بینی بارندگی اهمیت خاصی دارند. سلول‌ها و بیولوژی‌های مختلف در شرایط دمایی مختلف عامل‌های مختلفی را نشان می‌دهند که باعث تغییرات در رفتار و ویژگی‌های مختلف بیولوژیکی می‌شود. در این مقاله به‌وسیله استفاده از فناوری‌های موردی و نرم‌افزاری، تأثیرات مختلف دمایی بر روی سرعت جواننده بررسی می‌گردد.

ماده مختلف از لحاظ آماری اختلاف معناداری (P<0.05) جواننده بود که آزمایش با افزایش 5 درجه سانتی‌گراد بر سرعت جواننده افزوده شد 25 درجه صدا آلماس و 30 درجه صدا آلماس بر سرعت جواننده با دست امد، ولی بین دمای 25 و 30 درجه در پایان جواننده افزوده شد 25 درجه صدا آلماس و 30 درجه صدا آلماس بر سرعت جواننده با دست امد، ولی بین دمای 25 و 30 درجه در پایان جواننده افزوده شد 25 درجه صدا آلماس و 30 درجه صدا آلماس بر سرعت جواننده با دست امد، ولی بین دمای 25 و 30 درجه در پایان جواننده افزوده شد 25 درجه صدا آلماس و 30 درجه صدا آلماس بر سرعت جواننده با دست امد، ولی بین دمای 25 و 30 درجه در پایان جواننده افزوده شد 25 درجه صدا آلماس و 30 درجه صدا آلماس بر سرعت جواننده با دست امد، ولی بین دمای 25 و 30 درجه

تأثیر دمای در سرعت جواننده

ماده مختلف از لحاظ آماری اختلاف معناداری (P<0.05) جواننده بود که آزمایش با افزایش 5 درجه سانتی‌گراد بر سرعت جواننده افزوده شد 25 درجه صدا آلماس و 30 درجه صدا آلماس بر سرعت جواننده با دست امد، ولی بین دمای 25 و 30 درجه در پایان جواننده افزوده شد 25 درجه صدا آلماس و 30 درجه صدا آلماس بر سرعت جواننده با دست امد، ولی بین دمای 25 و 30 درجه در پایان جواننده افزوده شد 25 درجه صدا آلماس و 30 درجه صدا آلماس بر سرعت جواننده با دست امد، ولی بین دمای 25 و 30 درجه در پایان جواننده افزوده شد 25 درجه صدا آلماس و 30 درجه

تأثیر دمای در سرعت جواننده

ماده مختلف از لحاظ آماری اختلاف معناداری (P<0.05) جواننده بود که آزمایش با افزایش 5 درجه سانتی‌گراد بر سرعت جواننده افزوده شد 25 درجه صدا آلماس و 30 درجه صدا آلماس بر سرعت جواننده با دست امد، ولی بین دمای 25 و 30 درجه در پایان جواننده افزوده شد 25 درجه صدا آلماس و 30 درجه صدا آلماس بر سرعت جواننده با دست امد، ولی بین دمای 25 و 30 درجه در پایان جواننده افزوده شد 25 درجه صدا آلماس و 30 درجه صدا آلماس بر سرعت جوانн...
شکل ۱ - روند تغییرات سرعت جوانه‌زی باد دما در بدنش عدس الملك

شکل ۲ - روند تغییرات درصد جوانه‌زی باد کلی عدس الملك در سطوح دمای مختلف (به‌ویژه جبیرلین)، فعالیت آنزیم‌ها (امیلاز، اورتازی، پروتاز، لیزاز) و در نهایت هضم، تجزیه ذخایر بذر و انتقال آن به محور جنین که وابسته به درجه حرارت و رطوبت هستند. به علاوه جذب فعال آب توسط بذر در محیط مرطوب، منجر از درجه حرارت است (کوچکی و همکاران، ۱۳۶۷). به نظر می‌رسد کاهش فعالیتهای آنزیمی در درجه حرارت بالای و اختلاف در فعالیت آنزیم‌ها در درجه حرارت بالا (تجزیه شدن ساختمان سببی آنژیم‌ها)، علت اصلی کاهش درصد جوانه‌زی است.

پراکنده بذر عدس الملك اگر دمای محیط کمتر از ۲۰ درجه سانتی‌گراد باشد بايد مقدار بذر تراکم بوده در واحد سطح و افزایش عملکرد است. نتایج این آزمایش نشان داد حداکثر درصد جوانه‌زی (Gmax) از دمای ۲۰ و ۲۵ درجه سانتی‌گراد به دست آمده در دمای ۴۰ درجه سانتی‌گراد جوانه‌زی مشاهده نشده و کمترین درصد جوانه‌زی مربوط به دمای ۵ و ۳۵ درجه سانتی‌گراد بود (جدول ۲).

درصد توقف جوانه‌زی در دمای حداکثر می‌تواند تغییر بروزیده‌ای ضروری جوانه‌زی باشد (کولند و مسی دونالد، ۱۹۹۵).

۲ Denature

۱ Hardegree
بحث‌های اسفاده نمود که اشاره به خواندنی بر جبران شود. محققین اعضا کردن دمای اکثریت تا 15 درجه سانتی‌گراد باعث کاهش معنی‌دار حداکثر خواندنی در بذر گل‌شن و تعطیف که می‌توانند خواندنی در دمای 145 درجه سانتی‌گراد افزایش یافته و در دمای 30 درجه سانتی‌گراد معنی‌داری در دمای 13 درجه سانتی‌گراد بر اثر استفاده متفاوت می‌گردد که افزایش معنی‌داری در دمای 1389، بخش‌های درصد خواندنی به کاهش در این شرایط برده می‌شود و دلایل افزایش یافته و در دمای 30 درجه سانتی‌گراد در افزایش خود می‌رسد و با افزایش 25 درجه سانتی‌گراد به حداکثر خود می‌رسد و با افزایش 1، دما از این مقدار خواندنی کاهش می‌یابد (هونکو و همکاران، 1991). طول رشته‌ای آفت‌گردان نیز با افزایش دما از 10 درجه سانتی‌گراد افزایش یافته و بیشترین مقدار نسبت به درجه سانتی‌گراد به دست آمده با افزایش دما از 30 درجه سانتی‌گراد به حداکثر خود رشته‌ای روند کاهشی پیدا کرد. حداکثر طول خواندنی افتاب گردان نیز در دمای 35 درجه سانتی‌گراد به دست آمده (سیلر، 1998). در آزمایشی که بر جوانانی خرفه انجام شد مشاهده شد که طول رشته‌ای با افزایش دما به طور معنی‌داری افزایش نشان داد و طول ساقه‌چه تحت تأثیر افزایش دما قرار نگرفت (رحمی و همکاران، 1389).

تأثیر دما بر وزن شکه رشته‌ی ساقه‌چه

این افزایش دما باعث شده‌است که معنی‌دار افزایش در وزن خشک رشته‌ی ساقه‌چه در دمای 30 درجه سانتی‌گراد به دست آمده با افزایش دما از 5 درجه سانتی‌گراد وزن وزنه‌ی رشته‌ی 180 درصد افزایش یافت و لی. در دمای 10 درجه سانتی‌گراد و رشد 34 درجه ساقه‌چه معنی‌داری در وزن شکه رشته‌ی خود در دمای 145 درجه سانتی‌گراد با افزایش دما از 10 درجه سانتی‌گراد وزن وزنه‌ی رشته‌ی افزوده شد (14/5 درصد) ولی اختلاف معنی‌داری بین وزن خشک

1 Huang
2 Seiler
تأثیر دما بر یکنواختی جوانبزی (GU) طبق نتایج بدست آمده از آزمایش اثر بر یکنواختی جوانبزی بذر عدس المک معمول (GU) بود (جدول 1). افزایش دما از 5 تا 25 درجه سانتی‌گراد وزن خشک ساقه‌چه در گازهای پر ۱۰۰ درصد کاهش یافت و در دماهای ۲۰ و ۲۵ درجه وزن خشک ساقه‌چه اختلاف معنی‌داری نداشت (جدول 2). وزن ریشه‌چه نگهداری در دماهای ۲۰ درجه سانتی‌گراد با حداکثر خود رسید (هوای و خرده (آزمایش حرفه‌ای) وزن ریشه‌چه ساقه‌چه نیز افزایش معنی‌داری نشان داد (داش، کامی، و کافی، ۱۳۸۷). بیشترین وزن نازه ریشه‌چه و ساقه‌چه افتاکبیگان نیز در دماهای ۲۵ درجه سانتی‌گراد به دست آمد (سیلر، ۱۹۹۸).

تأثیر دما بر رشد گیاه‌چه دماهای گزارش نشده در این آزمایش تأثیر معنی‌داری (جدول 1) بر بیشینام گیاه‌چه عدس المک داشت (جدول 1). بیشترین دماهای گیاه‌چه در دماهای ۱۵ و ۱۰ درجه به دست آمد. با افزایش دما از ۲۵ تا ۴۰ درجه سانتی‌گراد وزن خشک ساقه‌چه کاهش یافت و در دماهای ۲۰ و ۲۵ درجه وزن خشک ساقه‌چه اختلاف معنی‌داری نداشت (جدول 1). دماهای بالاتر از ۲۵ درجه سانتی‌گراد به دست آمد و روند افزایشی از دماهای دماهای ۲۰ و ۱۵ درجه سانتی‌گراد به دست آمد. بیشترین وزن نازه ریشه‌چه و ساقه‌چه افتاکبیگان نیز در دماهای ۲۵ درجه سانتی‌گراد به دست آمد (سیلر، ۱۹۹۸).

جدول 1- تجزیه واریانس میانگین بررسی شاخه‌ها جوانبزی در بذر عدس المک

<table>
<thead>
<tr>
<th>دما</th>
<th>جوانبزی ساقه‌چه</th>
<th>دما</th>
<th>جوانبزی ساقه‌چه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵</td>
<td>۰.۵۱ ± ۰.۱۱</td>
<td>۲۵</td>
<td>۰.۱۱ ± ۰.۰۳</td>
</tr>
</tbody>
</table>

2 Germination Uniformity

1 Iannucci
جدول 2- مقایسه میانگین‌های ناخن‌های جوان‌زنی گیاه عدس المک در سطوح مختلف دما... 

<table>
<thead>
<tr>
<th>سطح</th>
<th>جوان‌زنی</th>
<th>دما (کلی)</th>
<th>درجه (بند در جوان‌زنی)</th>
<th>شاخه ریشه‌های جوان‌زنی (میلی‌متر)</th>
<th>طول شاخه ریشه‌های جوان‌زنی (میلی‌متر)</th>
<th>وزن شاخه ساقه جوان‌زنی (گرم)</th>
<th>وزن شاخه ساقه جوان‌زنی (روز) 1</th>
<th>وزن پکتکوان‌های جوان‌زنی (روز) 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۱۰</td>
<td>D90</td>
<td>۶۰</td>
<td>۲۵</td>
<td>۸۵</td>
<td>۸۵</td>
<td>۸۵</td>
<td>۸۵</td>
<td>۸۵</td>
</tr>
<tr>
<td>۱۱۰</td>
<td>D10</td>
<td>۸۵</td>
<td>۶۰</td>
<td>۶۵</td>
<td>۶۵</td>
<td>۶۵</td>
<td>۶۵</td>
<td>۶۵</td>
</tr>
</tbody>
</table>

در هر ستون میانگین‌های دارای حروف مشترک با اساس آزمون LSD فاقد اختلاف آماری معنی‌دار در سطح ۰/۰۵ هستند. 

نتیجه‌گیری

نتایج این تحقیق نشان داد که با توجه به نتایج کلی این تحقیق، افزایش دما در عدس المک بحث می‌شود.

منحنی دمای تجمع جوان‌زنی در مقابل زمان را نشان می‌دهد زیرا در دما بیش از ۲۵ درجه سانتی‌گراد بود، سرعت تیار بیش از جوان‌زنی بذر با افزایش دما از ۵ به ۱۰ درجه سانتی‌گراد افزایش یافته و با ادامه افزایش دما از ۲۵ تا ۶۰ درجه سانتی‌گراد این مقادیر برنده کاهشی شود. سرعت تیار جوان‌زنی در طول رشد جوان‌زنی و ساقه‌چه در دمای ۶۰ درجه سانتی‌گراد بیشترین سطح دما و بیشترین نسبت به جوان‌زنی می‌باشد.

یکنواختی جوان‌زنی در حقیقت طول فاز خطی در منحنی تیار بیش از قطع می‌باشد. با افزایش دما در بذر جوان‌زنی به همراه افزایش درجه سانتی‌گراد بذر، سرعت تیار بیش از جوان‌زنی بذر با افزایش دما از ۵ به ۱۰ درجه سانتی‌گراد افزایش یافته و با ادامه افزایش دما از ۲۵ تا ۶۰ درجه سانتی‌گراد این مقادیر برنده کاهشی شود.
صفحه ۱۴۵
مجله پژوهشهای بذر ایران/ سال دوم/ شماره دوم/ ۱۳۹۴

منابع

باقری، م.، گلپور، ا.ر.، شیرازی، ر.ا.، اوج، زینبی، م.، جعفری‌پور، م. ۱۳۸۷. بررسی اثرات رشد کاشت و مقادیر مختلف کود نیترات بر خصوصیات کمی و کیفی گیاه دارویی بازوهه در شرایط افغانی. مجله پژوهش در علوم کشاورزی، ۴(۲): ۲۹۰-۲۹۴.

تبریزی، ل.، نصیری محلاتی، م.، و کوچکی، ع. ۱۳۸۲. ارزیابی درجه حرارت‌های حاداقل به‌پهنه و حداکثر جوان‌تخت اسفردی
و پسیلو، نشریه پژوهش‌های زراعی ایران. ۲۲(۴): ۱۵۱-۱۵۴.

جعفری، ن.، اصل‌نهائی، م.، و صبوری، ع. ۱۳۹۰. ارزیابی مدل‌های رگرسیون غیرخطی بر توصیف سرعت ظهور گیاهچه
سه رقم کلزا نسبت به دما. مجله علوم گیاه‌زی و زراعی ایران، ۲۴(۹): ۸۶۸-۸۷۵.

درخشان، ا.، قرفخان، ج. و پروانه، غ. ۱۳۹۲. برآورد دماهای کاردینال و زمان حرارتی مورد نیاز برای جوان‌تنی بذر ابری‌سالام
بذری (Cyperus difformis). مجله دانش علوم‌های هزر، ۴(۷): ۲۳-۲۷.

رحمی‌نژاد، ز.، و کافی، م. ۱۳۸۹. ارزیابی درجه حرارت‌های کاردینال و تأثیر سطوح مختلف دما بر شاخص‌های جوان‌تنی گیاه
نرخی و حفاظت‌های جوان‌تنی (Portulaca oleracea) (پرتولکا اوئریکها) به دما. نشریه اکوپزیولوژی گیاه‌زی و زراعی، ۲۲(۲): ۲۲۹-۲۳۶.

رهبانی، س.، سرخ، س.، و خوش‌نورد، ب. ۱۳۸۳. ارزیابی مدل‌های رگرسیون برای توصیف واکنش جوان‌تنی (Lens culinaris M.)
به دما. مجله تولید گیاه‌زی و زراعی ایران، ۵(۴): ۲۴-۲۷.

زمین‌نژاد، ا.، سلطانی، ا.، کلیشی، س.، و ساداتی، ص. ۱۳۸۹. دماهای کاردینال و واکنش به دما و دامنه برداری دمای جوانه
ژنی زبان در ارقام گندم (Triticum aestivum L.). مجله تولید گیاه‌زی و زراعی ایران، ۵(۴): ۲۳-۲۷.

علیرضا، م.، و عسکری، س. ۱۳۸۳. درصد سرعت جوان‌تنی و شاخص بینه گیاه‌چه دو گونه گیاه دارویی
غیره (Eruca sativa L.) و (Anthemis alitissima L.) گیاهان دارویی و مطب ایران. ۲۰۰۷-۲۰۱۹.

قبری، ع.، رحمی‌نژاد مشهدی، ح. نصیری محلاتی، م.، کافی، م.، و راستگو، م. ۱۳۸۲. جنسه‌های اکورپزیولوژیکی جوانه زنبوریان
در واکنش به دما. مجله پژوهش‌های زراعی ایران، ۲۳(۲): ۲۷۱-۲۷۶.

کوچکی، ع.، راشفی، ن.، و صادقی‌رود، ا. ۱۳۸۹. مبانی فیزيولوژیکی رشد و نمو گیاهان زراعی
تشکله فیکتیقات (Eruca sativa L.) و (Anthemis alitissima L.) (ترجمه). انتشارات آستان قدس، صفحه ۱۴۷-۱۵۰.

گنجعلی، ع.، و سری‌نیا، غ. ۱۳۸۸. فیزیولوژی گیاهان زراعی. انتشارات جهاد دانشگاهی مشهد، صفحه ۱۵۰-۱۸۰.

گنجعلی، ع.، و سری‌نیا، غ. ۱۳۸۸. فیزیولوژی گیاهان زراعی. انتشارات جهاد دانشگاهی مشهد، صفحه ۱۵۰-۱۸۰.

گنجعلی، ع.، پارسا، م.، و امیری دهاجمدی، س. ۱۳۸۹. برآورد درجه حرارت‌های کاردینال و زمان حرارتی مورد نیاز برای
جوشه‌ی جنگل‌زی و سری‌شان زیتون‌پیش‌های نشود (Cicer arietinum L.) (نشریه پژوهش‌های حیوانات ایران، ۲۴(۳): ۹۷-۱۰۳.
لطفی، ن.، سلطانی، ا.، و اسکندر، ۱۳۸۷. تأثیر دما بر مؤلفه‌های جوان‌تنی ارقام کلزا. مجله علوم کشاورزی ایران، ۲۳۵(۴): ۳۱۳-۳۲۱.

لطفی، ن.، سلطانی، ا.، و اسکندر، ۱۳۸۷. تأثیر دما بر مؤلفه‌های جوان‌تنی ارقام کلزا. مجله علوم کشاورزی ایران، ۲۳۵(۴): ۳۱۳-۳۲۱.

لطفی، ن.، سلطانی، ا.، و اسکندر، ۱۳۸۷. تأثیر دما بر مؤلفه‌های جوان‌تنی ارقام کلزا. مجله علوم کشاورزی ایران، ۲۳۵(۴): ۳۱۳-۳۲۱.

لطفی، ن.، سلطانی، ا.، و اسکندر، ۱۳۸۷. تأثیر دما بر مؤلفه‌های جوان‌تنی ارقام کلزا. مجله علوم کشاورزی ایران، ۲۳۵(۴): ۳۱۳-۳۲۱.


Determination of Cardinal Temperatures and Respons of Securigera securidaca L. to Different Temperatures of Germination
Zeinab Alipoor1, *, Sohrab Mahmodi2

1 M.Sc. Student, Agroecology, Faculty of Agriculture, Birjand University, Birjand, Iran
2 Associate Professor, Faculty of Agriculture, Birjand University, Birjand, Iran

*Corresponding author, E-mail address: Zalipoor2014@yahoo.com

(Received: 2014.09.09 ; Accepted: 2015.04.26)

Abstract

In order to determinate the cardinal temperatures and investigate the effect of temperature on seed germination and seedling growth of Securigera securidaca, a study was conducted in a completely randomized design with 8 temperature treatments (5, 10, 15, 20, 25, 30, 35 and 40°C) and four replications in research laboratory of faculty of agriculture at the Birjand University in 2013. Two-segmented linear regression model was fitted between germination rate and temperatures to determine cardinal temperatures for germination. Cardinal (minimum, optimum and maximum) temperatures of germination were determined as -1, 22.5 and 40.2°C respectively. Maximum rate and percentage of germination obtained in the range of 20-25°C. Maximum of radical length and dry weight, maximum of caulicle length and dry weight and maximum of vigor seedling were obtained in 20°C, 10-20°C and 5-30°C respectively. Maximum and minimum germination uniformity (GU) was obtained in 25 and 5°C.

Keywords: Seedling vigor, Germination percentage, Two-Segmented Linear Regression, Germination uniformity