(گزارش کوتاه علمی)

(ECTura sativa)

تأثیر دمآهای متناوب بر سرعت جوانه‌زیدن برند منداب

جلال جلیلیان، ن. تیم خلبانی اقدام

1. دانشگاه گروه زراعت دانشگاه ارومیه

2. استادیار گروه گیاه‌شناسی دانشگاه پیام نور تبریز

3. پست الکترونیک: نویسنده مسئول: jalilian@urmia.ac.ir

(دریافت: 1393/8/31; پذیرش: 1393/12/22)

چکیده

منداب از گیاهان مهم دارویی است که تاکنون مطالعاتی در خصوص تغییرات دمآهای کاردنیال جوانه‌زی آن صورت نگرفته است. در این مطالعه کاملاً تصادفی 4 تکرار و 10 سطح دمآبی (1، 0، 1، 0، 0، 20، 0، 0، 0، 20، 0، 0، 20) رژیم بذری منداب در آزمایشگاه تحقیقات بر دانشگاه ارومیه انجام شد. نتایج نشان داد که دمآهای متناوب بر سرعت و درصد جوانه‌زیدن برند منداب داشت و مدل دندان مانند به‌خوبی قاریدی درون‌بایی و تغییرات دمآهای کاردینیال وسایل آزمایشگاه کاردنیال (دمآهای پایه، بهبود همدانی و فواید و دمای حداکثری) بود. سرعت جوانه‌زیدن در دمآب مساوی و کمتر از 65/2و مساوی و بالاتر از 47/6 درجه سانتی‌گراد متوقف شد و در محدوده دمآبی 23/01-15/23 درجه سانتی‌گراد. سرعت جوانه‌زیدن حداکثر مقدار بود (86/10/3%). همچنین نتایج نشان داد که کیفیت منداب کاردنیال بر جوانه‌زیدن در محدوده و سبیعی از درجه حرارت محیطی از 17/15 تا 17/16 درجه سانتی‌گراد است و با اینکه می‌تواند در فصول مختلف و شرایط آب و هوایی متنوع با فرض فراهم سایر متغیرهای مورد نیاز رشد، رشد موفقیت داشته‌باشد.

واژه‌های کلیدی: دمآب کاردینیال، سرعت جوانه‌زیدن، منداب

مقدمه

منداب گیاهی روز بلند با قابلیت رشد و نمو در مناطق معتدل و سرد است که جوانه‌زیدن سریع بذرها و استقرار مناسب بوده‌ها در زمینه‌های بیوتیک در کشت‌های دیده‌گام گیاهان بازیزی با مشکل باعث می‌شود. بر این اساس، افزایش سرعت رشد اولیه بوده‌ها، دستیابی سریعتر به بهبود کامل زمستان و شاخه‌های سمل برگ مناسب و در نتیجه افزایش پایداری استفاده از عوامل محیطی در گیاهان نظر منداب دراید اهمیت قرار گرفت با اینکه برا ذراعه‌های کاردینیال گیاهی که (T1، T2، T3، T4) قرار دارد که برای ارائه مدل پیش‌بینی جوانه‌زیدن سه جزء

1. Tekroni and Egli
2. Soltani
دیماهی کاردانل بتارمی این که در مدل سازی، بهبود عملکرد رضایت‌گذاری حرارتی مورد نیاز در هر مرحله رشدی کاربرد فراوان دارد و در گونه‌های زراعی بهره برداری تغییرات کشاورزی و توانایی انتخاب کننده‌گی مسئولیت و انتخاب دارویی مصرف گوگانوک و اهمیت دمایه کاراتژال و نتوان آن در مطالعات مورد شناسایی در صورتی تغییر دمایه کاراتژال بنیادی در کشور، مطالعه حاضر انجام شد.

مواد و روش‌ها

این تحقیق در آزمایشگاه تحقیقات بذر دانشکده کشاورزی دانشگاه ارومیه با قابلیت کامل تصادف با 4 نکار و 11 سطح دمایی (10، 10.5، 12، 15، 20، 25، 30، 35، 40 و 45 درجه سانتی‌گراد) اجرا شد. از هر نکار 50 عدد بذر در داخل پنجره دیس محوتی دولابی کاغذ واحد در داخل انکویتار قرار گرفت و بازده‌ها که به سطح دمایی از 15 دقیقه برای دمای به (200) و (45 درجه سانتی‌گراد) تا فاصله زمانی 12 و 24 ساعت (12 ساعت) تا فاصله زمانی 12 و 44 ساعت (14 ساعت) سه بذر گرفته، میزان طوفان درجه سانتی‌گراد بهمراه بزرگ‌سازی در طوفان بهره‌برداری 1 میلی‌متر یا بیشتر، بر نظر گرفته شد. (کامپکر و همکاران 2008) و در طول دوره آزمایش در صورت نیاز اب مغطریا اضافه شد. برای محاسبه درصد و سرعت جوانه‌گذاری از برنامه Germin (سلطانی و ملاح، 1389) استفاده شد.

می‌دانسته، از تأثیر دمای میانگین (بیول و بلک، 1994) بر دیماهی کاردانل بتارمی. برای کشت و پرورش گیاهان در این مورد، علاقه‌برداری، کشتگاهی قرار گرفته است. این گیاه تأمین زیادی به رشد و نمو در یک روش اصلی رشد می‌دهد و نگهداری و پرورش گیاهان. این مطالعات اغلب از سوی گیاه‌شناس‌ها و تغییراتی که به‌طور مستقیم روی گیاه‌ها و محیط‌زیستی آن‌ها می‌کارند. (جبلیلی و همکاران، 1386) می‌تواند به کشت و پرورش گیاهان در این مورد، علاقه‌برداری، کشتگاهی قرار گرفته است. این گیاه تأمین زیادی به رشد و نمو در یک روش اصلی رشد می‌دهد و نگهداری و پرورش گیاهان. این مطالعات اغلب از سوی گیاه‌شناس‌ها و تغییراتی که به‌طور مستقیم روی گیاه‌ها و محیط‌زیستی آن‌ها می‌کارند. (جبلیلی و همکاران، 1386) می‌تواند به کشت و پرورش گیاهان در این مورد، علاقه‌برداری، کشتگاهی قرار گرفته است. این گیاه تأمین زیادی به رشد و نمو در یک روش اصلی رشد می‌دهد و نگهداری و پرورش گیاهان. این مطالعات اغلب از سوی گیاه‌شناس‌ها و تغییراتی که به‌طور مستقیم روی گیاه‌ها و محیط‌زیستی آن‌ها می‌کارند. (جبلیلی و همکاران، 1386) می‌تواند به کشت و پرورش گیاهان در این مورد، علاقه‌برداری، کشتگاهی قرار گرفته است. این گیاه تأمین زیادی به رشد و نمو در یک روش اصلی رشد می‌دهد و نگهداری و پرورش گیاهان. این مطالعات اغلب از سوی گیاه‌شناس‌ها و تغییراتی که به‌طور مستقیم روی گیاه‌ها و محیط‌زیستی آن‌ها می‌کارند. (جبلیلی و همکاران، 1386) می‌تواند به کشت و پرورش گیاهان در این مورد، علاقه‌برداری، کشتگاهی قرار گرفته است. این گیاه تأمین زیادی به رشد و نمو در یک روش اصلی رشد می‌دهد و نگهداری و پرورش گیاهان. این مطالعات اغلب از سوی گیاه‌شناس‌ها و تغییراتی که به‌طور مستقیم روی گیاه‌ها و محیط‌زیستی آن‌ها می‌کارند. (جبلیلی و همکاران، 1386) می‌تواند به کشت و پرورش گیاهان در این مورد، علاقه‌برداری، کشتگاهی قرار گرفته است. این گیاه تأمین زیادی به رشد و نمو در یک روش اصلی رشد می‌دهد و نگهداری و پرورش گیاهان. این مطالعات اغلب از سوی گیاه‌شناس‌ها و تغییراتی که به‌طور مستقیم روی گیاه‌ها و محیط‌زیستی آن‌ها می‌کارند. (جبلیلی و همکاران، 1386) می‌تواند به کشت و پرورش گیاهان در این مورد، علاقه‌برداری، کشتگاهی قرار گرفته است. این گیاه تأمین زیادی به رشد و نمو در یک روش اصلی رشد می‌دهد و نگهداری و پرورش گیاهان. این مطالعات اغلب از سوی گیاه‌شناس‌ها و تغییراتی که به‌طور مستقیم روی گیاه‌ها و محیط‌زیستی آن‌ها می‌کارند. (جبلیلی و همکاران، 1386) می‌تواند به کشت و پرورش گیاهان در این مورد، علاقه‌برداری، کشتگاهی قرار گرفته است. این گیاه تأمین زیادی به رشد و نمو در یک روش اصلی رشد می‌دهد و نگهداری و پرورش گیاهان. این مطالعات اغلب از سوی گیاه‌شناس‌ها و تغییراتی که به‌طور مستقیم روی گیاه‌ها و محیط‌زیستی آن‌ها می‌کارند.
صفات به سطوح مختلف دمایی معنی دار بود (جدول 1). بر همین اساس کمترین درصد جوانزنی در دمای‌های بین 3 و 4 درجه سانتی‌گراد به دست آمد و همین ترتیب بالاترین درصد جوانزنی در محیط‌های 5 و 6 درجه سانتی‌گراد مشاهده شد (شکل 1). گزارش‌های متعدد حاکی از افزایش دمای در پولوانی خاص برند سرعت جوانزنی بین‌رها می‌باشد (هاردرگری و همکاران، 2006؛ یکی از اثرات یاد شده تولید زوال بذر نیز به دنبال داشته باشد (هاردرگری، 2006).

نتایج بررسی سرعت جوانزنی در مقابل سطوح مختلف دما نیز نشان داد که باعث بنیاد سرعت جوانزنی به سطوح مختلف، دمای این پژوهش، دمای بهینه پوستی و محیط دما در پایین حداقل 0.004 (P=0.004) که بر اساس آن دما حداکثر دمای بهینه نشان می‌دهد. در همان شرایط نیز، تغییرات در زمان رسیدن به در حد و در حد حداکثر به حداکثر در محیط‌های دمایی کمتر از 47/6 درجه سانتی‌گراد مشاهده شد و جوانزنی در دمای کمتر از 47/6، بیشتر از 47/6 درجه سانتی‌گراد متوقف شد (شکل 2). حداکثر سرعت جوانزنی در پیشین شرایط نیز، بر سطح بود تغییر در زمان رسیدن به در حد حداکثر حداکثر در اثر نشان می‌دهد. در اکثر جوانزنی بین‌رها نسبت به عوامل محیطی و حتی نشان‌دهنده در این دمای‌های بهینه T01 (دماي پهپاد) تا دمای T02 (دماي سقف) تاریکی، تاریکی جوانزنی ایست. تاریکی ایست (P) باعث تاریکی ایست با محیط برای در محیط بهینه اندازه Proc nlin است. استفاده از روش SAS (2001) SAS با آزمون LSD در سطح احتمال 0.05 درصد انجام گردید.

نتایج و بحث
نتایج تأثیر سطوح مختلف دما بر سرعت و درصد جوانزنی نشان داد که پاکش هر دوی این

2 Hardegree and Winstral
3 Bannayan

R50=1/D50

که در آن R50 سرعت جوانزنی زمان که جوانزنی به 50 درصد حداکثر مقدار خود می‌رسد و D50 زمان تا رسیدن درصد جوانزنی جوانزنی به 50 درصد حداکثر مقدار خود است. تأثیر دما بر جوانزنی رشد گیاهی شاخص بین‌رها بر حسب دمای کاربنال (دماي حداکثر بهینه و حداکثر) بیان نمود. مبنای توصیف دما و سرعت جوانزنی و برآورد دمای کاربنال از مدل رگرسیون غیرخطی تاب دادن مانند استفاده گردید که بس از بررسی این مدل، دمای کاربنال جوانزنی منابع از طریق معادله 2 محاسبه شدند (سلطانی و همکاران، 2006):

\[
\text{معادله 1) }

f(T) = \begin{cases}
T - T_{c} & \text{if } T_{b} < T \leq T_{01} \\
T_{b} - T_{c} & \text{if } T_{01} < T \leq T_{b} \\
1 & \text{if } T \geq T_{c}
\end{cases}
\]

\[
\text{معادله 2) }

f(T) = \begin{cases}
T - T_{c} & \text{if } T_{01} < T \leq T_{b} \\
0 & \text{if } T \geq T_{b} or T \leq T_{02}
\end{cases}
\]

که در آن Tb دماي پهپاد، Tc دماي سقف، T01 دماي پهپاد فوقاین، T02 دماي سقف فوقاین (شکل 2) تاریکی، تاریکی جوانزنی ایست. تاریکی ایست (P) باعث تاریکی ایست با محیط برای در محیط بهینه اندازه Proc nlin است. استفاده از روش SAS (2001) SAS با آزمون LSD در سطح احتمال 0.05 درصد انجام گردید.

Soltani
جهلابان و خلیلی اقیم: تأثیر دماهای متناوب بر سرعت جوانه‌زنی بذر منداب...

جدول 1- تجزیه واریانس دماهای متناوب بر سرعت و درصد جوانه‌زنی بذر منداب

<table>
<thead>
<tr>
<th>درجه آرایی</th>
<th>سرعت جوانه‌زنی</th>
<th>منابع تغییرات</th>
<th>درصد جوانه‌زنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>دما</td>
<td>10</td>
<td>دما</td>
<td>0.72/0.44</td>
</tr>
<tr>
<td>خطا</td>
<td>33</td>
<td>خطا</td>
<td>0.87/0.17</td>
</tr>
<tr>
<td>ضریب تغییرات (درصد)</td>
<td>9.44</td>
<td>خلال 1 درصد معیار **</td>
<td></td>
</tr>
</tbody>
</table>

شکل 1- مقایسه میانگین درصد جوانه‌زنی بذر منداب در سطوح مختلف دما

جدول 2- مقدار دماهای کاربردی، حداقل سرعت جوانه‌زنی و سطح معیار دربرداری بر اساس مدل ددنان مانند در بذر منداب

<table>
<thead>
<tr>
<th>P_model</th>
<th>r_{Max}</th>
<th>T_e</th>
<th>T_o2</th>
<th>T_o1</th>
<th>T_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>منندب</td>
<td>0.10/0.04</td>
<td>21/2</td>
<td>12/1</td>
<td>15/9</td>
<td>0.18/0.04</td>
</tr>
</tbody>
</table>
نتیجه‌گیری
نتایج آزمایش نشان داد که گیاه متداب برای شروع جوانه‌زی به دلایل مختلف نیاز می‌رود و در صورت کشت، با فرض فراهمی سایر منابع مورد نیاز، تولید موثر و پایدار می‌باشد. هر چه درک بیشتری که تعمین دامای زیره گیاهان می‌تواند با بهبود سازگاری به محیط‌زیستی و دما کم یا زیاد در مرحله جوانه‌زی نسبت مفید باشد و در این رابطه مطالعه زنوتیپ‌هایی با سازگاری اکologi‌کی متفاوت‌تر از مناطق مختلف کوناگون می‌تواند قابل دسترسی باشد.

منابع
جلیلیان، ع. مظاهری، د. توکل افشار، ر. حبانیان، ج. عبّاللهی‌نژاد، م. و گوهیری، ج. 1387. برآورد دمای زیره و بررسی روند جوانه‌زی و نسبت شکستگی ارقام منوزرم چند‌وزن‌در کشت‌های مختلف حراج. چندرنگی. 240. 97-112. 1392. تعیین دماهای کاربندی جوانه‌زی گیاه دارویی کاکتوسی چینساله (Ziziphus clinopodioide Lam). (نشره پژوهش‌های زراعی ایران). 11: 50-55. 1392. زینبی، آ. سلطانی، آ. گالیمی، س. و ساداتی، س. ج. 1389. دماهای کاربندی، واکنش به دما و دانه‌برداری دمایی جوانه‌زی یک در ارقام گندم (Triticum aestivum L.) مجله الکترونیک تولید گیاهان زراعی، 3: 42-47. 1392. سلطانی، آ. و زینبی، آ. برآورد به دماهای کاربردی ساده برای آزموز و پژوهش در زراعت. اشکال‌شناسی انجمن علمی بومشناسی دانشگاه شهید بهشتی. 80 صفحه. 1390. صبوری‌رود، س. کافی، م. نظمی، آ. و بیانیان اول، م. برآورد دماهای کمیته، بهینه و بهبودی جوانه‌زی چند‌وزن‌در گوشی با استفاده از مدل پنج‌پارامتری با نشره بوم‌شناسی گزارشی (Kochia scoparia L. Schard) 240: 51-91. غلامی تیله بنی، ج. کرد فیزیولوژی، ق. و زینبی، آ. 1390. تعیین دماهای کاربندی جوانه‌زی یک در ارقام پرنگ. مجله علوم و تکنولوژی یزد. 11: 51-60.
چندین انگلی اقیم: تأثیر دمای زیر گردش حاوی زنی بر سرعت گریزه...
(Short Communication)

Effect of Alternative Temperatures on Germination Rate of Rocket Seed
(Eruca sativa)

Jalal Jalilian¹*, Nabi Khalili Aqdam²

¹ Associate Professor of Agronomy, Department, Urmia University, Urmia, Iran
² Assistant Professor, Department of Agriculture, Payame Noor University, Saghez, Iran
*Corresponding author E-mail address: jalilian@urmia.ac.ir

(Received: 2014.11.22 ; Accepted: 2015.03.14)

Abstract

Rocket (Eruca sativa) is an important medicinal plant which not be done any experiment about its germination quantification response to temperature. Thus, an experiment base on CRD performed in seed research laboratory of Urmia University with four replications with ten levels of temperatures includes: 1, 3, 5, 10, 15, 20, 25, 30, 35 and 40 °C. Results revealed that the temperature had significant effects on the rate and germination percent and Dent-like model estimated greatly cardinal temperature (base, upper and bottom optimum and ceiling temperatures). Germination rate stopped at equal and less than 0.79 and equal and higher than 47.6 °C and r_max were 0.066 in 16.9-32.6 °C. Also, results emphasized that Rocket seed needs low temperature for germination but, germination rate and percent of Rocket increased by temperature increment. Therefore, the Rocket can germinate and emerge in dispersal spans of an environmental thermal from 0.79 to 47.6 °C and thus recognized as a crop with allowable production for various seasons and climate.

Keywords: Cardinal temperature, Germination rate, Rocket (Eruca sativa)