انر پیش تیمار سالیسیلیک اسید بر جوانزنی بذر گیاه دارویی مارینیغال
(Silybum marianum cv. Budakalazi)

نصرین فرهادی 1، احمد استاجی 2، سعیده علیزاده سالخو 3

1 دانشجوی دکترای بیزی کاری، گروه علوم باغبانی، دانشگاه تبریز
2 دانشجوی دکترای علوم باغبانی، دانشگاه رفسنجان
3 استادیار گروه علوم باغبانی دانشگاه تبریز
s.alizadeh@tabrizu.ac.ir

(تاریخ دریافت: 16/12/1394؛ تاریخ پذیرش: 16/12/1395)

چکیده
پیش تیمار بذور با اسید سالیسیلیک نقش مهمی در بهبود جوانزنی و افزایش مقاومت گیاهان در برابر تشتهای محیطی دارد. به منظور بررسی اثر پیش تیمار سالیسیلیک اسید بر جوانزنی بذر مارینیغال تحت شرایط تنش شوری و خشکی آزمایشی بصورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار اجرای گردید. تیمارهای آزمایش شامل 4 سطح سالیسیلیک اسید (0، 100، 200 و 300 میلی گرم در لیتر) و تنش شوری و خشکی هر کدام با 4 سطح (0، 200، 200 و 200 بار) بودند. نتایج نشان داد اثر متقابل پیش تیمار سالیسیلیک اسید با تنش شوری و خشکی در سطح اختلال 1/ عنی مبادر است. سطح بالای تنش شوری (8-بار) منجر به کاهش درصد و سرعت جوانزنی، طول رشد، وزن ساقه و ضریب آمونیاک و وزن خشک در گیاهچه‌های مارینیغال شد. همچنین درصد جوانزنی، طول ساقه، وزن جوانزنی و ضریب آمونیاک در سه سطح تنش خشکی کاهش یافتند. پیش تیمار بذور با غلظت 200 و 300 میلی گرم در لیتر سالیسیلیک اسید در سطح بالای شوری (8-بار) درصد جوانزنی را نسبت به شرایط تنش بدون پیش تیمار به طور معنی‌داری افزایش داد. همچنین در شرایط تنش خشکی، پیش تیمار با هر سطح سالیسیلیک اسید در سه سطح خشکی موجب افزایش معنی‌دار درصد جوانزنی نسبت به شرایط تنش بدون پیش تیمار گردید. نتایج حاصل از این آزمایش نشان داد که پیش تیمار بذور با سالیسیلیک اسید می‌تواند منجر به افزایش معنی‌دار تحقیق مارینیغال نسبت به تنش شوری و خشکی در مرحله گوناگونی گردند.

واژه‌های کلیدی: پیش تیمار، گیاه‌های دارویی، تنش شوری، مارینیغال

مقدمه
گیاهان دارویی مخازن غنی مواد مؤثره‌ی بسیاری از داروها می‌باشند. مواد مؤثره‌ای ارزش‌آمیز با هدایت فرازمین شده و گزیننگ مشاهده شده و ساخت آنها بهطور پایدار تحت تاثیر عوامل محیطی قرار می‌گیرد. بهطوری که عوامل محیطی سبب تغییرات در رشد گیاهان دارویی می‌شود و کبیف مواد مؤثره‌ی آنها می‌گردد (اسدیپیکی، 1384). ازجمله عوامل محیطی که

1 Bohnert
فرنادی و همکاران: اثر پیش تیمار سالسیلیک اسید بر جوانه‌نیزی بذر گیاه دارویی مارینیغال

مناسب به معنای ترکیبات مناسب و مؤثر در کاهش تأثیر چربی‌های محیطی بر جوانه‌نیزی گیاهان مختلف برخاسته و گذاری مؤثر در راستای آرامش تولیدات داخلی برداشت شد. در این منابع مایه مارینیغال به لحاظ داشتن مواد مؤثر فراوان از ترکیبات فلاونونید سیلیس و سیلولیرستین در دمای اختجاهات کیفی و کیفیتی از بیماری‌های دیگر و همچنین سازگاری نسبتاً خوب یک گیاه دارویی با شرایط آب و هوای ایران اهمیت دارد (اولیه‌بگی). بر این اساس بررسی اثر پیش تیمار سالسیلیک اسید بر کاهش یک گیاه ارزشمند خواهر بود. مطالعات نشان میدهند تنش خشکی و شوری موجب کاهش معناداری در سرعت و درصد جوانه‌نیزی بذر مارینیغال می‌گردد (قزهانی و رامین، 1278). هدف از این پژوهش بررسی تأثیر پیش تیمار سالسیلیک اسید در کاهش میزان خستگی ناشی از تنش خشکی و شوری خشکی بر جوهره‌سازی بذر و کاهش گیاه‌های مارینیغال می‌باشد.

مواد و روش‌ها

به‌منظور بررسی اثر پیش تیمار سالسیلیک اسید بر جوانه‌نیزی و خصوصیات رشد گیاه‌های گیاه دارویی مارینیغال تحت تنش خشکی و شوری، دو آزمایش جداگانه با ۳ درصد شیشه‌پوشی کشاورزی دانشگاه تربیت مدرس بصورت فاکتوریل در قالب طرح کاملاً صادقی با ۲ ترکیب انداخته شده. شرایط کشت از شروع آزمایش بذرها به مدت ۳۰ ثانیه با محلول هیبرکیم سدیم ۱۰ درصد ضدعفونی شد و پس از تهیه شد، قبل از شروع آزمایش بذرها به مدت ۱۲ ساعت در محلول‌های با گل‌های گیاهی (۵،۱۰،۲۰۰ میلی‌گرم در لیتر) سالسیلیک اسید به طور جداگانه خیس‌سازی شدند. پس از آن پرده بر پیش تیمار رشد گیاهان با حساب می‌آید. در شرایط نشان دهنده و شوری جوانه‌نیزی گیاه در تعیین تأثیر نهایی از اهمیت زیبایی برخودار است: بنابراین با استفاده از

۱۰ Ghavami and Ramin
۱۱ Budakalazi

۱ Raskin
۲ Bezрукova
۳ Deef
۴ El-Shraity and Hegazi
۵ Tavili
۶ Senaranta
۷ Cutt and Klessig
۸ Shakirova and Sahabutdinova
۹ Srivastava and Dwivedi
مجله پژوهشهای بذر ایران/ سال سوم/ شماره اول/ 1395

تا خشک گردند (دیف. 2007). در محله بدنی 25 نفر خشکشده‌ها به یک نمونه دیش استریل حاوی کافی صاف انجام داده شد. برای ایجاد نشانه‌های مختلف در 4 سطح (6 ـ 4 ـ 8 ـ 4) و به میزان 10 نمی‌برد. در فرآیند تشخیص پلی اتیلن گلیکول (PEG 6000) در 4 سطح (0 ـ 4 ـ 6 ـ 8) و به میزان 10 پلسیت‌های فرآیند تشخیص در هر دو آزمایش از اب مفرط استفاده شد. پس از اعمال تیمارها، پنژیم‌های خاک در دمای 25 درجه سانتی‌گراد در داخل زرمین‌های 140 سانتی‌متری و 8 ساعت تاریکی قرار گرفت. (شام خرد، 1991).

بذرها به مقدار زیر روزانه بازیلی و تعداد زیردهی که ریشه‌ها آنها قابل رویت بود، به‌عنوان بذردار جواندارده شمایند (علی، 1998). در روز روز آخر آزمایش (روز چهاردهم) طول ریشه‌ها و هماهنگی در میان بذردار جواندارده ۳ بین ۷ تا ۱۲ می‌باشد. نتایج این محققان نشان داد که سطح بالایی تنش شوری سبب کاهش رشد انداز هوايی و رشد می‌شود. کاهش طول ریشه‌ها می‌تواند با افزایش غلظت شوری در گیاهان مورد مطالعه مسابقه شود. ریشه به دلیل ارتباط مستقیم با شوری بیشتر از سابقه ادامه در معرض تشخر، سایر بذردارها و به‌عنوان یک فیلتر عبور بی‌زیستی که ریشه را گذرانی کرده و نسبت مطلق بی‌زیستی سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندارده و نسبت مطلق سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندارده و نسبت مطلق سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندارده و نسبت مطلق سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندارده و نسبت مطلق سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندارده و نسبت مطلق سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندارده و نسبت مطلق سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندارده و نسبت مطلق سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندارده و نسبت مطلق سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندارده و نسبت مطلق سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندارده و نسبت مطلق سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندارده و نسبت مطلق سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندارده و نسبت مطلق سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندارده و نسبت مطلق سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندارده و نسبت مطلق سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندارده و نسبت مطلق سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندارده و نسبت مطلق سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندارده و نسبت مطلق سایر بذردارها را افزایش داده می‌شود. گاهی که بذردار جواندا...
فراهدی و همکاران: اثر پیش‌تناری سالسیسیک اسید بر جوانه‌زنی بذر گیاه دارویی مارینیغال

میلی‌گرم در لیتر موجب افزایش طول ساقه‌هچ در 6- بار شوری‌گردد. ضریب‌های آزمایشی با اعمال تنش شوری کاهش پایین‌تری و پیش‌تناری سالسیسیک اسید در 6
غلظت (0.2 و 3 میلی‌گرم در لیتر در افزایش ضریب اولومتری در هر سه سطح تنش شوری مؤثر بود. طول و
همکاران (2010) اثر پیش‌تناری سالسیسیک اسید را در افزایش
3 میلی‌گرم در لیتر سالسیسیک اسید در هر سه سطح شوری موجب وزن خشک گیاه‌های مارینیغال گردید که با تایید موفقیتی و خرسندی
موفقیتی و خرسندی (2012) گزارش کردن که مصرف سالسیسیک اسید سبب افزایش وزن خشک گیاه‌های
زنن تحت شرایط تنش می‌شود. نتایج بیرونی و
همکاران (2012) نیز نشان داد که پیش‌تناری سالسیسیک اسید سبب افزایش وزن خشک ریشه‌های
سالسیسیک اسید ریشه و وزن خشک ریشه‌های صورتی در گیاه‌های زبر در شرایط تنش شوری
شده است. سازوکاری که سالسیسیک اسید رشد ریشه و
بخش هوایی را در اثر پیش‌تناری گیاه‌های می‌دهد به‌خوبی شناخته نشد اما احتمال داده می‌شود که
سالسیسیک اسید طولی شدن و تحقیق سولولی را به
همراه می‌دهد. در پی اینکه تنظیم می‌نماید
پیش‌تناری سالسیسیک اسید طولی شدن و خاصیت سولولی را به
همراه می‌دهد. در پی اینکه تنظیم می‌نماید
پیش‌تناری سالسیسیک اسید، میزان تحسین سولولی می‌رسنم
ریشه‌های گیاه‌های ویژه را که بسیار به افزایش رشد طولی
می‌نریزد و به‌کمک می‌کند (شاکیبووا و سالسیسیک اسید از طرف
کدوی‌بازیگری می‌کند (فریدی‌دلی‌ی ای همکاران;
(2) (2003) که به نظر می‌رسد افزایش وزن خشک گیاه‌های
در ارتباط با افزایش طول ریشه‌های سالسیسیک اسید باید
باشد. ۳
با ۴- بار نسبت به تیمار شاهد. می‌تواند به دلیل شوری‌سخت
بنده معمولی در اثر تنش شوری کاهشی نافذ‌تری و پیش
تناری بذرها با ۲۰۰ و ۱۰۰ میلی‌گرم در لیتر سالسیسیک
اسید سبب افزایش درصد جوانه‌زنی گردید. این داده‌ها با

1 Rajasekaran
2 Chadho and Gupta
3 Kabiri
4 Fariduddin
جدول 1- تجزیه واریانس صفوف مختلف جوانی‌نی و رشد گیاه‌های ماریشیال تحت تأثیر نش شوری و پیش تیمار سالسیلیک اسید

<table>
<thead>
<tr>
<th>تیمار</th>
<th>ریشه‌چه</th>
<th>طول ریشه‌چه</th>
<th>وزن خشک</th>
<th>ضریب وزن خشک</th>
<th>سرعت گسترش جوانی‌نی</th>
<th>سرعت گسترش جوانی‌نی (برد در روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پیش تیمار</td>
<td>3</td>
<td>48.38</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>سالسیلیک اسید</td>
<td>3</td>
<td>48.38</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>نش شوری</td>
<td>3</td>
<td>48.38</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>پیش تیمار و نش شوری</td>
<td>3</td>
<td>48.38</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
</tbody>
</table>


جدول 2- مقایسه میانگین اثر نش شوری و پیش تیمار سالسیلیک اسید بر صفوف مختلف جوانی‌نی و خصوصیات رشد گیاه‌های ماریشیال

<table>
<thead>
<tr>
<th>جدول 2</th>
<th>طول ریشه‌چه</th>
<th>وزن خشک</th>
<th>ضریب وزن خشک</th>
<th>سرعت گسترش جوانی‌نی</th>
<th>سرعت گسترش جوانی‌نی (برد در روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0N0</td>
<td>38.55</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>S0N1</td>
<td>38.55</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>S0N2</td>
<td>38.55</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>S0N3</td>
<td>38.55</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>S1N0</td>
<td>38.55</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>S1N1</td>
<td>38.55</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>S1N2</td>
<td>38.55</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>S1N3</td>
<td>38.55</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>S2N0</td>
<td>38.55</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>S2N1</td>
<td>38.55</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>S2N2</td>
<td>38.55</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>S2N3</td>
<td>38.55</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>S3N0</td>
<td>38.55</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>S3N1</td>
<td>38.55</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>S3N2</td>
<td>38.55</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
<tr>
<td>S3N3</td>
<td>38.55</td>
<td>10.12</td>
<td>2.02</td>
<td>2.14</td>
<td>0.03</td>
</tr>
</tbody>
</table>

در هر صفحه و گروه مقایسه شده، تیمارهای با حروف یکسان بر اساس ازون دانک اختلاف معنی‌داری ندارند. N0 به جدول سطح 0.0 6-8-بار شوری و S3، S2، S1، S0 به ترتیب غلظت‌های 100، 500، 1000، 2000 میلی‌گرم در لیتر سالسیلیک اسید

N3، N2، N1، N0 به در هر صفحه و گروه مقایسه شده، تیمارهای با حروف یکسان بر اساس ازون دانک اختلاف معنی‌داری ندارند. N0 به جدول سطح 0.0 6-8-بار شوری و S3، S2، S1، S0 به ترتیب غلظت‌های 100، 500، 1000، 2000 میلی‌گرم در لیتر سالسیلیک اسید
جرد ۳- تجزیه واریانس صفت مختلف جوانژنی و رشد گیاه‌های مارینتیغال تحت تأثیر نش خشکی و پیش تیمار سالسیلیک اسید

جدول ۴- مقایسه میانگین اثر نش خشکی و پیش تیمار سالسیلیک اسید بر صفت مختلف جوانژنی و خصوصیات رشد گیاه‌های مارینتیغال

<table>
<thead>
<tr>
<th>میانگین مقایسه‌ها</th>
<th>سرعت جوانژنی</th>
<th>گاز خونک</th>
<th>ضریب</th>
<th>ظرفیت ساقه‌چه (کروم)</th>
<th>درصد</th>
<th>درصد جوانژنی (در روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نش خشکی</td>
<td>96/21</td>
<td>181/2</td>
<td>3/2</td>
<td>5/28</td>
<td>1/2</td>
<td>5/2</td>
</tr>
<tr>
<td>پیش تیمار</td>
<td>3/5</td>
<td>3/5</td>
<td>3/5</td>
<td>3/5</td>
<td>3/5</td>
<td>3/5</td>
</tr>
<tr>
<td>(سالسیلیک اسید)</td>
<td>3/5</td>
<td>3/5</td>
<td>3/5</td>
<td>3/5</td>
<td>3/5</td>
<td>3/5</td>
</tr>
</tbody>
</table>

۱۳۶ تعداد میانگین در سطح ۱ و ۵ درصد میانگین دارای رتبه و ns عدم میانگین دارای رتبه و می‌باشد.

۳۴۴ در سطح ۱ و ۵ بر خشکی و S3 S2 S1 S0 بی‌هبئی رتبه غلظت‌های ۰.۰۰ و ۳۰۰ میلی‌گرم در لیتر سالسیلیک اسید

بر اساس نتایج که در طی آزمایش به‌دست آمده مشخص گردید که نش خشکی جوانژنی و کلیه خصوصیات رشد گیاه‌های مارینتیغال را تحت تأثیر قرار داد و پیش تیمار سالسیلیک اسید اثرات سوی ناشی می‌باشد.
مجله پژوهشهای بدر ایران/مجله پژوهشهای بدر ایران/سال سوم/شماره اول/۱۳۹۵

سالسیلیپک است اسید نش در شرایط بدون نش در افراشین
این فاکتور مؤثر بود. کاهش ضربان آلومئری در شرایط
تش توسط دیگر محققین نیز گزارش شده است
(موقتنی و خرسندی، ۲۰۱۲). در طول آزمایش درصد و
سرعت جوانهزنی مشاهده تأثیر نش خشکی
کاهش یافت و پیش در سالسیلیپک اسید مشاهده و
متات جوانهزنی و بالا (۱۹۹۹) مطالعه دارد. این ده
در طی آزمایش خود بیان نمودند مصرف خارجی
سالسیلیپک اسید بر محدود و وسیع از درمان‌ها ازجمله
جوانهزنی بذر، جذب و انتقال بیمار و نفوذپذیری غشا
تأثیرگذار است. سالسیلیپک اسید از طریق افراشین
فرآیند جذب آب توسط بذر سرعت جوانهزنی را افراشین
می‌دهد.

نتیجه‌گیری

با توجه به نتایج حاضر مشخص گردید گیاه دارویی
مارینیگال نش‌های شوری و خشکی را تا ۶-۰ بر تحمال
می‌کند. اما سطح بالای شوری و خشکی (۸-۹ بر
بکنواختی جوانهزنی و خصوصیات رشدی گیاهها را
مشاهده. تأثیر قرار می‌دهد. پیش انداز بذر
مارینیگال سالسیلیپک است اثر افراشین مقاومت این
گیاه به نش‌های مزبور گردید و تحمل این گیاه را تا
۸-۰ بر افراشین داد. با پایین‌ترین پیش انداز در گلگه‌های
۲۰۰ میلی گرم در لیتر سالسیلیپک اسید در بهبود
جوانهزنی بذر مارینیگال در مناطق خشک و شور قابل
توصیه می‌باشد.

جانسون (۱۹۹۵). در پژوهش حاضر نیز طول ریشه‌ی
تا نش ۶-۰ افراشین سپس از طول ریشه‌ی کاسته
شد. پیش انداز سالسیلیپک اسید در نش خشکی با
افراشین نسبت وزن ریشه به وزن اندام هوایی گیاه
برای جنب آب از خاک را افراشین داده و در نتیجه نش
به افراشین مقاومت گیاه به خشکی می‌گردد (کاترگی و
همکران، ۲۰۰۱). کردنک کننی خشکی نمی‌باید کاهش تئسیم و
گسترش باشی‌های بی‌شدو و همین مسئله موجب کاهش
طول ریشه‌‌چه در شرایط نش خشکی می‌گردد. یکی از
عمل که افراشین طول ساقه‌چه در شرایط نش خشکی
کاهش با عدم انقلال مواد غذایی از یافته‌های ذخیره‌ی
بذر به جنبین دوکینه است. طول گلی که بذر جوانه‌زده
در محیط‌های که طول نش ریشه‌چه در این افراشین
نش خشکی، امر طبیعی بوده و نتایج حاکی از آن است
که با افراشین طول نش خشکی، وزن ریشه و ساقه‌چه
مارینیگال کاهش یافته که به دلایل کاهش تقافی گذب
اب در شرایط نش بوده است. مقایسه نتایج دو آزمایش
نش خشکی و نش‌های شوری مشخص شد که طول
ساقه‌چه نسبت به ریشه‌‌چه خارس بیشتر را متحمل
گردید و پیش انداز سالسیلیپک اسید به میزان زیاد
در کاهش میزان ان خارسی بوده است و می‌توان
پیش انداز بستری افراشین سالسیلیپک اسید در
کاهش اثر نش بر طول ساقه‌چه مؤثرتر از طول ریشه‌چه بوده
است. آزمایش‌های مختلف یافته‌ان در مطبوب است که در
شرایط نش، ارتباط که بستری در شرایط نش
ساقه‌چه خور را بیشتر افراشین دهنده این افراشین
ساقه‌چه آنها با افراشین شدت نش کم‌بود.
گیاه‌های مقاوم در برابر نش به شماری ایاند (صدوقی و
همکران، ۲۰۰۱). در نتایج سالسیلیپک اسید از طریق
افراشین طول ساقه‌چه باعث ایجاد مقاومت در برابر نش
خشکی می‌گردد. هر سه سطح نش خشکی پیشین طولی
معنی‌داری ضریب آلومئری را کاهش داد و پیش انداز

1 Fernandez and Johnston
2 Cesare
3 Katergi
4 Sedghi
5 Rajasekaran and Blake


The Effect of Pretreatment of Salicylic Acid on Seed Germination of Milk thistle (Silybum marianum cv. Budakalaszi) Under Salinity and Drought Stress

Nasrin Farhadi 1, Ahmad Estaji 2, Saeideh Alizadeh-salteh 3,*

1 Ph.D Student, Department of Horticultural Sciences, University of Tabriz, Tabriz, Iran
2 Ph.D student of University of Vali-E-Asr Rafsanjan, Rafsanjan, Iran
3 Assistant Professor, Department of Horticultural Sciences, University of Tabriz, Tabriz, Iran

*Corresponding author, E-mail address: s.alizadeh@tabrizu.ac.ir

(Received: 24.03.2015 ; Accepted: 18.10.2015)

Abstract

The seed pretreatment with salicylic acid has an important role in improving seed germination and increasing plant resistance to environmental stresses. This study was performed to investigate the effect of salicylic acid on seed germination of Milk thistle under salinity and drought stress. A factorial experiment was conducted in a completely randomized design with three replications. Treatments were consisted of 4 levels of salicylic acid (0, 100, 200 and 300 mg/l) and four levels of each drought and salinity stress (0, - 4, - 6, - 8 Bar). The results showed an interaction effect between pretreatment with salicylic acid and drought and salinity stresses was significant at the 1 % level. On high salinity level (-8 Bar), seed germination percentage and rate, root and shoot length, fresh and seedling dry weight reduced significantly. The short length, fresh weight and percent germination reduced in all three levels of drought stress. Pretreatment with salicylic acid (200 and 300 mg/L) significantly reduce the harmful effects of drought and salinity stress (-6 and - 8 Bar) on germination and seedling growth parameters of Milk thistle. The results of this experiment showed that seed treatment with salicylic acid can lead to increase resistance of Milk thistle to salinity and drought stress in seed germination.

Keywords: Environmental stress, Milk thistle, Poly ethylene glycol, Sodium chloride