بررسی تأثیر هیدروپرایمینگ و اسپرورامینگ با سولفات روي بر خصوصيات جوانه‌زی سه
 رقم کلرای پاییزه

شهرام نظری 1، 2، محمدمهدی ابوبکریانی 3، فریبرزدی 4

1 دانشجوی دکتری آکوئولوژی گیاهان زراعی، دانشکده کشاورزی، دانشگاه ب大使یه سینا همدان
2 استادیار گروه زراعت، دانشکده کشاورزی، دانشگاه ب大使یه سینا همدان
3 مسئول تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات آموزش و تربیت کشاورزی، کرج
4 پست الکترونیک نویسندگه مسئول: sh.nazari92@basu.ac.ir

(تاریخ دریافت: 11/8/1394؛ تاریخ پذیرش: 1393/12/13)

چکیده
برای پرداختن از رسه‌های بسیار مؤثر در بهبود جوانه‌زی و استقرار گیاهه‌ها است. به‌منظور تعيین
پهپاده تیمارهای هیدروپرایمینگ و اسپرورامینگ و بر گیاه‌های جوانه‌زی بذر کلزا آزمایش‌های جدالنامه
در سال 1393 در آزمایشگاه فتاواری بذر دانشگاه آزاد اسلامی واحد کرج انجام شد. آزمایش اول،
هیدروپرایمینگ بذرهاي سه رقم کلزا (آگاپی، زرافم و طلايی) به موجب آب معمول بود که در سطح
زمات 14/12, 30, 60 و 90 ساعت آبگیری انجام شد. آزمایش دوم شامل سه رقم کلزا، شب، وغلط سولفات
روي (0/35/5/0, 30/4/0 و 40 درصد در هیدروپرایم 10 ساعت ماهيده شد.
همچنان در ارتباط با سرعت جوانه‌زی، بهترین سرعت جوانه‌زی مربوط به رقم طلايی در هیدروپرایم 10
ساعت بود. بهترین شاخص طولی بذرهای طلايی و شاخص وزنی بذرهای طلايی به ترتیب با 1/05/5/0 و 2/63/0
در رقم
1393/12/13
که در سطح چهارم هیدروپرایم مشاهده شد. اثرات مشابه رکم، غلظت سولفات روی و مدت زمانت
اماپی در هیدروپرایم به کلیه معادلات برسی بیچ چنین ساقه به ونی بذرهای طلايی موفقیت
نداشت. نتایج مقایسه میانگین اثرات مشابه سیگنت نشان داد که بهترین رکم در هیدروپرایم 120
گرم و 5/0 میلی‌متر زمین بذرهای طلايی به ترتیب در ارقام آگاپی، زرافم و طلايی به غلظت
30/0 گرم در لیتر سولفات روی و در مدت زمانت 10 ساعت مشاهده شد. نتایج به دست آمده از این مطالعه نشان داد
هیدروپرایمینگ و پرداختن با سولفات روی موجب بهبود کارکرد بذر کلزا می‌شود.

واژه‌های کلیدی: درصد جوانه‌زی، سرعت جوانه‌زی، شاخص وزنی بذرهای طلايی، ونی بذرهای طلايی

مقدمه
کلزا یا 6% درصد روغن دانه، یکی از مهم‌ترین
گیاهان زراعی است که در سطح دنیا برای استخراج
روغن کشت شده و از پیش‌ترین میزان رشد سالنه

Brassica napus L.
نتیجه و همکاران: بررسی تأثیر هیدروبرایمینگ و اسморپراپرومینگ با سولفات روتی بر خصوصیات جوانه‌زایی

خورج جوانه از خاک را تسهیل نمی‌آورد. از دیگر سودمندی‌های پرینجیت بذر کاهش دمای پایه جوانه‌زایی است (افتا و همکاران، ۲۰۱۲). رابط‌های پرینجیت شامل هیدروبرایمینگ و اسمورپراپرومینگ نوع خاصی از آمادگی‌سازی بذر از محلول‌هایی با پتانسیل استرژی پایین حاوی مواد شیمیایی مختلف نظیر انتنی گلاکیول، میانتویل، سولفات روتی، کوهده شیمیایی و غیره صورت می‌گیرد. همچنین در روش هیدروبرایمینگ، بذرها از آب و بیرون استفاده از هیچ‌کنون ماده شیمیایی تیمار می‌شود که این نوع پرینجیت سبب ساده و ارزان بوده و مقدار جذب آب از طریق مدت زمانی که بذر در ناماس با آب به حساب می‌آید. درایای نقطه قوت و ضعیف است و بسته به نوع گیاه، مرجع رشد گیاه، غلفت و میزان عامل پرینجیت، تأثیر گذاری مختلف دارد (آذری‌پور و همکاران، ۱۳۸۸). مثلاً گزارش‌های مختلف حاکی از این است که پرینجیت باعث افزایش درصد سرعت و یک‌خواتین جوانه‌زایی و سری سندرم یخ‌زده (جمهوری‌خانه و همکاران، ۱۳۸۷) کاهش می‌کند. در این مطالعه (شاه‌نوا و ماکی، ۱۳۹۰) که در این مطالعه واقعیت این نتایج نشان داد که پرینجیت کاهش سندرم یخ‌زده بذرها از طریق کاهش درصد بلوط‌گیری دارد و سرعت جوانه‌زایی در بذرها میزان نسبت به کاهش سندرم را نسبت به کاهش سندرم یخ‌زده بلوط‌گیری Echinacea purpurea (Afzal و نیمینگی، ۱۳۹۱) با بررسی تأثیر زمان‌های

1 Afzal
2 Fabunmi
3 Aboutalebian
4 Laware and Raskar
5 Begum
6 Farooq
7 Babaeva
8 Ashraf and Foolad
9 Kaya
کرج در واکنش به هیدروپریامینگ و اسپرینگل بهترین تیمار یکی کاشت در مزرعه انجام بود.

مواد و روش‌ها

بر اساس اثربخشی‌های جنگلی و ارجاع‌هایی که به گزارش‌های سه روزه گزارش نقل شده کرج یا از آزمایشگاه‌های آزمایشگاه انتقال کرج در انسداد با محققان حاضر است. این کرج در قابل طرح کارایی دارای چهار تکرار مورد بررسی قرار گرفت. در آزمایش به‌صورت فاکتوریل در قالب طرح کامل دوازده‌نفره یک جفت از گل‌های آراپاگورنیک، آکاسیا و زنبق و مدت زمان هیدروپریامینگ در هفت ماه شامل ۵۰، ۵۱، ۵۴ و ۶۰ سه بررسی در ابتدا از مکان‌های آنالیز ۷۲۰ دسی زیمنس بر متر بود. در آزمایش تعداد ۷۲۰ دسی شده شناختی فاکتور اول ارقام کرج (طلایی، آکاسیا و زنبق) را در فاکتور نخست هیدروپریامینگ و مدت زمان تابع مؤثر در تعیین انتخاب تیمار با توجه به تحقیقاتی که در این هم‌رتبه یک جفت از محققان با کرج تهیه شده در جدول ۱، ارائه گردید. برای انجام آزمایش، ابتدا کلیه چربسی و سپس به‌درنگ به‌طور کامل ضدعفونی شدند. به این امر می‌تواند با مخلوط هیپوکلریت سدیم در حدود ۱۰ تهیه ضدعفونی و پس از آن جنس باار یا منطقی ضدعفونی گردیدند. بعد از اتمام مدت زمان هیدروپریامینگ، به‌درنگ به‌طور خارج و با اب منطقی ضدعفونی چهار خشک خشک شدند. به این دسته تعداد ۷۲ ساعت در محیط سالخوردگی و دمای اتاق نگهداری شدند. به‌طوری که رطوبت آنها بهمراه اولیه رسید. در این روزه‌ها از چند تیمار نشانه به‌عنوان به شکل استفاده شده در این آزمایش از برگ‌های دیواره‌های بی‌ قطر ۹ سانتی‌متری هیدروپریامینگ اختصاصی مختلف جنگل‌زیست انتخاب شده. این برای ابتدا از یک جفت بهترین بی‌خطری برقرار سه در حدود ۱۰۰۰ دیسی کرج از میان ۲۲ ساعت با فاصله زمانی (۱ ساعت) یا قرارداد مخالی گروهی کرج، رکم ۱۰۰۱ اظهار داشت که هیدروپریامینگ بین ۴ تا ۱۰ ساعت حاصل به‌دست آید برای عدد و سرعت جوانه‌گذاری داشت. دوچرخه‌ای آن باعث داشت که بهترین نتایج از تیمارهای ۵ و ۶ ساعت به‌دست آمد. گرم در بهترین سرعت جوانه‌گذاری ۵۰۲۲/۰۵ و ۵/۰۵ در بهترین سرعت جوانه‌گذاری (۹۳/۲۱) اظهار داشت که بالاترین تعداد جوانه‌گذاری سه مادر هیدروپریامینگ و ۴۸ ساعت ماه می‌کند. رعایت استاندارد ۱ تولید کرج که نتیجه کرج‌های استحصال پذیر می‌باشد. از ارتفاع قابل توجه کرج‌های هیدروپریامینگ و اسپرینگل به بی‌خطری سه روزه مراکز می‌باشد. از ارتفاع قابل توجه کرج‌های هیدروپریامینگ و اسپرینگل به بی‌خطری سه روزه مراکز می‌باشد. از ارتفاع قابل توجه کرج‌های هیدروپریامینگ و اسپرینگل به بی‌خطری سه روزه مراکز می‌باشد. از ارتفاع قابل توجه کرج‌های هیدروپریامینگ و اسپرینگل به بی‌خطری سه روزه مراکز می‌باشد. از ارتفاع قابل توجه کرج‌های هیدروپریامینگ و اسپرینگل به بی‌خطری سه روزه مراکز می‌باشد. از ارتفاع قابل توجه کرج‌های هیدروپریامینگ و اسپرینگل به بی‌خطری سه روزه مراکز می‌باشد. از ارتفاع قابل توجه کرج‌های هیدروپریامینگ و اسپرینگل به بی‌خطری سه روزه مراکز می‌باشد.

1 Torabi and Rabii
2 Spring type
3 Winter type

* اطلاعات برگرفته از موسسه اطلاعات و نمایندگان یکم- دانش‌های روشنی می‌باشد.
ماتیوژ ژمان ژواننژی که با استفاده از رابطه 6 محاسبه شد (بیولی و بلک، 1994).

\[D_{	ext{تادانه‌ی}} = \sum_{i=1}^{n} D_{	ext{i}} \]

\[n = \text{تعداد روز‌های محاسبه شده از زمان کاشت} \]

\[D = \text{تعداد ذهاب‌های ژواننژی در روز} \]

داده‌های ضرب یکنوختی ژواننژی در آزمایش سطح مختلف هیدروپرآیمین با استفاده از روش تبدیل معکوس تبدیل شدند. در مطالعاتی که در آن‌ها یکی از متغیرها، زمان تأثیر یا زمان پایان جدایی باشد می‌توان از این تغییر شکل استفاده کرد. (ریجпер، 1389) نتایج با استفاده از نرم‌افزار MSTAT-C و SAS مورد تجزیه آماری قرار گرفتند و مقایسه میانگین‌ها با آزمون دانکن در سطح احتمال 0.01 درصد انجام شد.

نتایج و بحث

اثر هیدروپرآیمین بر یکنوختی ژواننژی

اثر رقم به جز وزن خشک ساقه و ریشه و همچنین ضرب یکنوختی ژواننژی در تمامی سطای مورد بررسی معنی‌دار بود (جدول 2). همچنین برهمکنش رقم و مدت زمان هیدروپرآیمینگ به‌طور خشک وزن ریشه و ضرب یکنوختی ژواننژی در کل که سطح در صفحه 1 درصد معنی‌دار بود (جدول 2).

نتایج مقایسه میانگین اثر مقابلی رقم و مدت زمان هیدروپرآیمینگ بر درصد و سرعت جواننژی نشان داد که هیدروپرآیمینگ در هر سه رقم مورد مطالعه، نسبت به تیمار شاهد وضعیت متوسط‌تر ایجاد کرد (جدول 3) ابزاریابی و همکاران (2012) با بررسی اثر هیدروپرآیمینگ بر خصوصیات جواننژی سه رقم کلاس BIAN (RGS 003 و Hayal 401 و Hayal 308) داشتن که هیدروپرآیمینگ سبب افزایش درصد جواننژی در هر سه رقم مورد بررسی نسبت به تیمار شاهد گردید.

\[\text{ماتیوژ سانتی‌گراد به مدت 2 ساعت حرارت داده شد (کابا و همکاران، 2006). درون هر چند ساعت تعداد 25 عدد بذر از هر بگ مورد مطالعه روی کاغذ صافی کشته می‌شده و به آنها 5 میلی‌لیتر آب مکث اضافه شد. مقایسه جواننژی با جذب آب توسط بذر خشک در حال استراحت، شروع و با خروج ریشه‌چه از ساختارهایی که آنها گرفته شده کامل می‌شود. بر این اساس، خروج دو میلی‌متری ریشه‌چه هبوعین معیار بذر جواننژی در نظر گرفته شد (سلطانی و همکاران، 1389).}

نتیجه‌گیری:

1. بررسی تأثیر هیدروپرآیمینگ و اسپروآپیمینگ با سوختات روز بر خصوصیات جواننژی...

2 Source: Inverse transformation

1 Bewley and Black
مجله پژوهش‌های بذر ایران/ سال سوم/ شماره اول/ ۱۳۹۵

جدول ۱- مشخصات ارتفاع موردهای طلازه در این تحقیق (بر اساس اطلاعات مؤسسه تحقیقات نهال و بذر کرج)

<table>
<thead>
<tr>
<th>نام رقم</th>
<th>مبدأ</th>
<th>سن بذر</th>
<th>نوع گرده افتخاری</th>
<th>تیپ ردش</th>
<th>وزن قهر دانه (گرم)</th>
<th>گروه ردیشی</th>
<th>متواضع عضلانی (تن در هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>طلازه اصلی</td>
<td>۱۳۶۶</td>
<td>غیر هیربید</td>
<td>پاییزه</td>
<td>۱۲۷۷</td>
<td>۴/۷۶۷</td>
<td>دیرس</td>
<td>۳۶</td>
</tr>
<tr>
<td>اکتابی</td>
<td>۱۳۸۰</td>
<td>غیر هیربید</td>
<td>پاییزه</td>
<td>۱۲۷۷</td>
<td>۴/۷۶۷</td>
<td>دیرس</td>
<td>۳۶</td>
</tr>
</tbody>
</table>

ساعت انتقال معنی‌داری نشان داده، بنابراین آنچه مسلم است این است که در گیاهان مختلف هیدراباینی‌گی دارای حاکمیت می‌باشد که می‌تواند طول رشد‌های این گیاهان را بهبود بخشید و طول دوره‌های کمر یا پیش‌تر از این دورانه می‌تواند اثر مثبت و بادراندگی داشته باشد. جذب بیش از حدا آب سبب به خوردن تماشای هرمولوگی و آنزیمی درون بذر می‌گردد که به دنبال آن سبب کاهش طول رشد و سازگاری می‌گردد (سیبیک، ۱۹۹۱). از طرفی نظر می‌رسد کاهش طول دوره هیدراباینی سبب کمتر بودن فعالیت آنزیمی در فراذایی‌های متابولیکی باشد. یکی از نتایج مهم پایین‌می‌گردد بحث زمان خاتمه آن است. چرا که خانه زودتر یا دیرتر سبب آسیب به بذر و عدم دستیابی به نتیجه مطلوب می‌شود. که این مسئله در هیدراباینی‌گی بسیار مهمتر است (آل عمرانی‌زاد و رضوی‌پور، ۱۳۹۲).

در پایین‌می‌گردد بنابراین با جذب آب محلولی دوم جوانعزی را تو می‌کند (انجام تحقیق سلول و آماده شدن برای ظره هرچه و زمانی که پس از هیدراباینی در محیط فال‌فرزد قرار می‌گیرد، به‌دسته‌های پایین‌می‌گردد. محلول واژه آب و محلول دوم جوانعزی را در مدت زمان کوتاه‌تری طی کرده و وارد مرحله سوم جوانعزی می‌شوند (شکمکی و همکاران، ۱۳۸۹).

متونوند در ارتباط با سرعت جوانعزی بیشتر و کاهش با ۸۳/۹ مربوط به رقم طلازی در هیدراباینی ۱۰ ساعت بود (جدول ۳). حتی سریع‌تر درصد و سرعت جوانعزی را می‌توان به فعالیت‌های آنزیمی نیز تجزیه کنند. مانند افزاش سریع، تعریق و افزایش سطح شارژ انتزی در گالین و DNA، RNA و ATP افرازی سنتز. افزایش تعداد و در عین حال ارتفاع عملکرد میکوتکنی‌ها نسبت داد (شیویکاکارا و همکاران، ۲۰۰۲). هیدراباینی‌گی از طريق افرازی سرعت و درصد جوانعزی به خصوص در کشتی که کمی زمانی در این نواحی می‌رواندا کوتاه‌ترین قابلیت دارد است. افزایش نسبت گیاهچه در مزرعه سیبیک می‌باشد. روند کلی تأثیر مثبت در رسما و مدت زمان هیدراباینی‌گی بر طول رشد و سازگاری نشان داد که در سه مرحله با افرازی مدت زمان هیدراباینی ۱۰ ساعت و در سه مرحله سازگاری و سازگاری هم‌مرحله روند ضعیف‌تری داشت (شیویکاکارا و همکاران، ۲۰۰۲). افرازی مدت زمان هیدراباینی ۴۴ ساعت این مؤلفه‌ها کاهش یافته. در همین راستا ازدیکن و همکاران Agropyron داشت که در گیاه ۱۳۸۸ افرازی مدت زمان هیدراباینی ۱۳۸۸ افرازی مدت زمان هیدراباینی در دامنه ۱۳۸۸-۱۳۸۹ ساعات

۱ Shivankar

۲ Singh
نتیجه‌گیری‌هایی برای تأثیر هیدروبرایمینگ و اسپورت‌برینگ به سوختگذاری‌های روزی بر خصوصیات جوانان‌تی

جدول ۲- نتایج واریانس(میانگین مربعات) و میانگین‌برداری ای ارقام کلارا تابع تیمار هیدروبرایمینگ

| جوانان‌تی | سرعت طول ریشه‌های جوانان‌تی | درجه مناسب تغییر آزادی | وزن خشک | شاخچ طولی | وزن بی‌خون | ضخامت پوستی | شاخچ | ضخامت درخت | زنخ خشک | سنی | رقم | هیدروبرایمینگ | رقم | هیدروبرایمینگ | حالت | صرب تغییرات | (درصد)
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۲</td>
<td>۳۲/۴۸</td>
<td>۷۷/۸۸</td>
<td>۱۶/۲۹</td>
<td>۲۷/۳۲</td>
<td>۴۶/۰۷</td>
<td>۷۱/۴۵</td>
<td>۹۳/۷۲</td>
<td>۹۴/۴۹</td>
<td>۹۷/۹۵</td>
<td>۱۱/۷۵</td>
<td>۱۲/۶۲</td>
<td>۱۳/۳۵</td>
<td>۱۴/۰۶</td>
<td>۱۵/۷۳</td>
<td>۱۶/۴۲</td>
<td>۱۷/۱۵</td>
<td>۱۸/۳۶</td>
</tr>
<tr>
<td>۱</td>
<td>۲۵/۲۵</td>
<td>۳۱/۵۶</td>
<td>۱۲/۵۳</td>
<td>۱۵/۲۵</td>
<td>۱۸/۰۳</td>
<td>۲۱/۵۷</td>
<td>۲۴/۰۶</td>
<td>۲۷/۳۵</td>
<td>۳۰/۴۳</td>
<td>۳۳/۴۲</td>
<td>۳۶/۳۱</td>
<td>۳۹/۲۰</td>
<td>۴۲/۱۹</td>
<td>۴۵/۰۹</td>
<td>۴۸/۳۷</td>
<td>۵۱/۸۵</td>
<td>۵۵/۳۳</td>
</tr>
<tr>
<td>۳</td>
<td>۴۷/۸۵</td>
<td>۶۲/۱۷</td>
<td>۷۸/۵۰</td>
<td>۹۳/۷۲</td>
<td>۱۰۸/۳۵</td>
<td>۱۲۳/۳۷</td>
<td>۱۳۸/۳۵</td>
<td>۱۵۳/۴۲</td>
<td>۱۶۸/۳۵</td>
<td>۱۸۳/۴۲</td>
<td>۱۹۸/۳۵</td>
<td>۲۱۳/۴۲</td>
<td>۲۲۸/۳۵</td>
<td>۲۴۳/۴۲</td>
<td>۲۵۸/۳۵</td>
<td>۲۷۳/۴۲</td>
<td>۲۸۸/۳۵</td>
</tr>
</tbody>
</table>

نتیجه حاکی از آن است که وزن خشک ریشه‌های گوجه‌فرنگی دارد. نتایج حاکی از آن است که وزن خشک ریشه‌های همبستگی با سرعت جوانانزی (F = ۳/۴۸) دارد (جدول ۲). در هنگام راستا گزارش شد از آن تا سرعت و درصد جوانانزی از طریق افزایش تقدیم سولولی موجب یافته‌های طول ریشه و به دنبال آن وزن خشک ریشه‌های به یافته‌های گوجه‌فرنگی آغازین قرار و همکاران (۲۰۰۸) جدول تجزیه واریانس نشان داد که اثر هیدروبرایمینگ بر ضخامت پوستی جوانانزی در سطح ۵ درصد معنی‌دار بود (جدول ۲). نتایج مقایسه میانگین مؤید این است که بیشترین ضرب بکوختی جوانانزی به ترتیب در مدت زمان‌های ۱۰ و ۱۴ ساعت هیدروبرایم مشاهده شد. همبستگی بین سرعت تیمارهای نیز از نظر مبارزات اختلاف معنی‌داری مشاهده نشد (شکل ۴). ریشه‌های دوم درصد مقداری معنی‌دارد که وزن خشک ساخته‌نامه نسبت به ریشه‌های در ارقام مورد بهبود بیشتری تحت تأثیر هیدروبرایمینگ قرار گرفت (جدول ۳). به نظر می‌رسد افزایش ریشه‌های همبستگی در شرایط هیدروبرایم به دلیل تأثیر برایمینگ از طریق قابلیت گسترش دیواره سلولی جنین ناشده که توسط باسرا و همکاران (۲۰۰۳) نیز تأیید شده است.

1 Basra
2 Li
3 Penalosa and Eira
شکل 1- اثر مدت زمان هیدروپرایمینگ بر وزن خشک ریشه‌های بیشترین وزن خشک ساقه‌های با (جدول 4)، اثرات زمان هیدروپرایمینگ را می‌توان به‌عنوان تعداد انزیمی و در آزمایشات کاهش دهنده در کاهش مدت زمان هیدروپرایمینگ به عمد نقاطه‌ها نسبت به گازون‌های عوامل کرک (آبگی و همکاران، 2013). جودی و شریفزاده (1385) نیز با بررسی سه رقم (گرگان و زنجان) در شرایط کنترل شده اظهار داشتند که با افزایش مدت زمان هیدروپرایمینگ تا 10 ساعت، طول ریشه‌ها و ساقه‌های افزایش داشت و با افزایش هیدروپرایمینگ تا 15 ساعت این و دو خصوصیت کاهش یافت. بر اساس نتایج به دست آمده در جدول (2) شاخص طولی بیشتری گیاه گرفته به‌وجود می‌آید. تأثیر هیدروپرایمینگ قرار گرفت به‌طوری‌که در اقتال مورد مطالعات پیش‌تر و همکاران (2003) نیز به اثر مثبت هیدروپرایمینگ بر روی شاخص طولی بیشتر لعسو اشاره کردند. افزایش شاخص طولی بیشتر با افزایش

شکل 2- اثر مدت زمان هیدروپرایمینگ بر ضریب یکتاخیت جوانه‌زی

بیشترین وزن خشک ساقه‌های با (جدول 4)، اثرات زمان هیدروپرایمینگ را می‌توان به‌عنوان تعداد انزیمی و در آزمایشات کاهش دهنده در کاهش مدت زمان هیدروپرایمینگ به عمد نقاطه‌ها نسبت به گازون‌های عوامل کرک (آبگی و همکاران، 2013). جودی و شریفزاده (1385) نیز با بررسی سه رقم (گرگان و زنجان) در شرایط کنترل شده اظهار داشتند که با افزایش مدت زمان هیدروپرایمینگ تا 10 ساعت، طول ریشه‌ها و ساقه‌های افزایش داشت و با افزایش هیدروپرایمینگ تا 15 ساعت این و دو خصوصیت کاهش یافت. بر اساس نتایج به دست آمده در جدول (2) شاخص طولی بیشتری گیاه گرفته به‌وجود می‌آید. تأثیر هیدروپرایمینگ قرار گرفت به‌طوری‌که در اقتال مورد مطالعات پیش‌تر و همکاران (2003) نیز به اثر مثبت هیدروپرایمینگ بر روی شاخص طولی بیشتر لعسو اشاره کردند. افزایش شاخص طولی بیشتر با افزایش

3 Raphanus sativus L.
جدول ۳ - اثر متقابل رقم و مدت زمان هیدروپرایمینگ بر وزن بذر گل رز مقدار کلار

<table>
<thead>
<tr>
<th>شماره بذر بسته وزن بذر گل</th>
<th>شاخص طول گل</th>
<th>طول ساقه گل (سانتی‌متر)</th>
<th>سرعت طول رشد گل (سانتی‌متر در روز)</th>
<th>بهره‌وری گل (پنجره در روز)</th>
<th>جوانی گل (ساعت)</th>
<th>رقم (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/00g</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00u</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00c</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00d</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00e</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00f</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00g</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00h</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00i</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00j</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00k</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00l</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00m</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00n</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00o</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00p</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00q</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00r</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00s</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00t</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00u</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00v</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00w</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00x</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00y</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>1/00z</td>
<td>148/79</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
</tbody>
</table>

مشاهدگیری‌های در هر ستون که دارای حرف مشترک هستند، اختلاف معنی‌داری بر اساس آزمون دانک در سطح ۵درصد دارند.

مطلب شاخس ورنی بینه بذر با ۴۵۶۹ ۴۰۷۱ به ترتیب در ارقام آکایی و زرفام در هیدروپرایمینگ ۱۰ ساعت مشاهده شد که در یک گروه آموز خارجی گرفته (جدول ۳)، علت این نیز مربوط به بازیابی دم جسم مهم شاخس ورنی بینه بذر با یکی طول گل‌های جوانی در این سطح هیدروپرایمینگ و بررسی تأثیر هیدروپرایمینگ و اسپروپرایمینگ با سوالات روزی بر خصوصیات جوانی گل...
اثر اسوموراینیک با سولفات‌های ریز و یوگریزه‌های جوانزئی

نتایج حاصل از این بررسی نشان داد که اثر رقم به جز وزن خشک رشد و ضربه بکاکشی جوانزه و اثر سولفات روی بر تمامی سطوح بررسی شده از این دو مورد به صورت مشابه داشته است. از این رو در مورد سطوح روی بر وزن خشک رشد و سطوح روی بر سطوح بررسی شده، اثر وزن خشک رشد به صورت مشابه اثر سطوح روی بر سطوح بررسی شده در سطوح سفید حاکم است. از این رو در مورد سطوح روی بر سطوح بررسی شده، اثر وزن خشک رشد به صورت مشابه اثر سطوح روی بر سطوح بررسی شده در سطوح سفید حاکم است.

از این رو اثر اسوموراینیک با سولفات‌های ریز و یوگریزه‌های جوانزئی به صورت مشابه اثر سطوح روی بر سطوح بررسی شده در سطوح سفید حاکم است. از این رو در مورد سطوح روی بر سطوح بررسی شده، اثر وزن خشک رشد به صورت مشابه اثر سطوح روی بر سطوح بررسی شده در سطوح سفید حاکم است.

مجله پژوهش‌های بذر ایران/سال‌نامه اول/1395/شماره اول

2 Tytkowska
3 Prasad
4 Sunderland

1 Fageria
نظری و همکاران: بررسی تأثیر هیدروپرامینگ و اسیدرایینگن با سولفات‌های آب خصوصیات جوانزی...
جدول ۴- جزییات واریانس (بیشینگ مربعات) و برگ‌های سوختگی بذر و گیاه‌های ارگام گزار تحت تیمار سوخت روی

<table>
<thead>
<tr>
<th>درصد سوخت</th>
<th>جوان زنی</th>
<th>درصد سوخت</th>
<th>جوان زنی</th>
<th>درصد سوخت</th>
<th>جوان زنی</th>
<th>درصد سوخت</th>
<th>جوان زنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.03</td>
<td>4</td>
<td>0.05</td>
<td>8</td>
<td>0.04</td>
<td>10</td>
<td>0.06</td>
</tr>
<tr>
<td>3</td>
<td>0.02</td>
<td>6</td>
<td>0.03</td>
<td>10</td>
<td>0.02</td>
<td>12</td>
<td>0.03</td>
</tr>
<tr>
<td>4</td>
<td>0.02</td>
<td>8</td>
<td>0.02</td>
<td>12</td>
<td>0.02</td>
<td>14</td>
<td>0.02</td>
</tr>
<tr>
<td>5</td>
<td>0.01</td>
<td>10</td>
<td>0.01</td>
<td>14</td>
<td>0.01</td>
<td>16</td>
<td>0.01</td>
</tr>
</tbody>
</table>

جدول ۵- اثر مقادیر بذر و غلتک سوخت روی و برگ‌های جوان زنی گیاه‌های ارگام گزار

<table>
<thead>
<tr>
<th>شاخ سوخت</th>
<th>طول ساقه چوب</th>
<th>طول ریشه چوب</th>
<th>سرعت کاشف</th>
<th>درصد سوخت</th>
<th>جوان زنی</th>
<th>درصد سوخت</th>
<th>جوان زنی</th>
<th>درصد سوخت</th>
<th>جوان زنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.03</td>
<td>4</td>
<td>0.05</td>
<td>8</td>
<td>0.04</td>
<td>10</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.02</td>
<td>6</td>
<td>0.03</td>
<td>10</td>
<td>0.02</td>
<td>12</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.02</td>
<td>8</td>
<td>0.02</td>
<td>12</td>
<td>0.02</td>
<td>14</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.01</td>
<td>10</td>
<td>0.01</td>
<td>14</td>
<td>0.01</td>
<td>16</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

میانگین‌های در هر ستون که دارای حداقل یک جرف مشترک هستند، اختلاف معنی‌داری بر اساس آزمون دانک در سطح 0.05 درصد ندارند.
در رقم زرفام و طولی به نیز بیشترین شاخص طولی بینه به بذر در غلتنه‌های 350 گرم در لیتر مشاهده شد که از نظر امرای اختلاف معنی‌داری بین آن‌ها مشاهده شد (جدول 6) به نظر می‌رسد غلتنه‌های بینین سوالات روى از طریق بهبود غشاء سیتوپلاسم و در نتیجه کاهش افزایش آنتی‌کولوتیده موجب افزایش قوه نامی و توان روش می‌گردد. با افزایش غلتنه سوالات روی از 33.70/1 گرم در لیتر شاخص طولی بینه به بذر در هر سه رقم آفت محسوسی داشت به‌طوری که در رقم آکایی روفام و طولی به ترتیب 82 و 90 درصد کاهش نشان داد (جدول 5).

<table>
<thead>
<tr>
<th>شاخص طولی بینه بذر</th>
<th>طول ساق‌هایه (سانتی‌متر)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>778/648b</td>
<td>852a</td>
<td>6</td>
</tr>
<tr>
<td>926/59a</td>
<td>948a</td>
<td>10</td>
</tr>
<tr>
<td>726/4Ab</td>
<td>812b</td>
<td>14</td>
</tr>
<tr>
<td>659/5Ac</td>
<td>639Ab</td>
<td>18</td>
</tr>
<tr>
<td>452/9Ab</td>
<td>756Ab</td>
<td>6</td>
</tr>
<tr>
<td>281/5cd</td>
<td>271b</td>
<td>10</td>
</tr>
<tr>
<td>476/98d</td>
<td>472b</td>
<td>14</td>
</tr>
<tr>
<td>489/15d-g</td>
<td>477b</td>
<td>18</td>
</tr>
<tr>
<td>338/52d-g</td>
<td>452b</td>
<td>6</td>
</tr>
<tr>
<td>313/5h-d-h</td>
<td>348c</td>
<td>10</td>
</tr>
<tr>
<td>419/51d-h</td>
<td>415b</td>
<td>14</td>
</tr>
<tr>
<td>383/16e-h</td>
<td>316c</td>
<td>18</td>
</tr>
<tr>
<td>472/36e-h</td>
<td>376c</td>
<td>6</td>
</tr>
<tr>
<td>377/29e-h</td>
<td>352c</td>
<td>10</td>
</tr>
<tr>
<td>470/29e-h</td>
<td>422c</td>
<td>14</td>
</tr>
<tr>
<td>447/28e-h</td>
<td>437c</td>
<td>18</td>
</tr>
<tr>
<td>457/84e-h</td>
<td>438c</td>
<td>6</td>
</tr>
<tr>
<td>356/19e-h</td>
<td>356c</td>
<td>10</td>
</tr>
<tr>
<td>457/19e-h</td>
<td>456c</td>
<td>4</td>
</tr>
<tr>
<td>467/11fg</td>
<td>413c</td>
<td>14</td>
</tr>
<tr>
<td>197/5gh</td>
<td>412c</td>
<td>18</td>
</tr>
<tr>
<td>155/1Ah</td>
<td>182a</td>
<td>6</td>
</tr>
</tbody>
</table>

جدول 7- اثر متقابل سوالات روی و مدت زمان پراپامینگ بر طول ساق‌هایه و شاخص طولی بینه بذر کلزا

<table>
<thead>
<tr>
<th>شاخص طولی بینه بذر</th>
<th>طول ساق‌هایه (سانتی‌متر)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>778/648b</td>
<td>852a</td>
<td>6</td>
</tr>
<tr>
<td>926/59a</td>
<td>948a</td>
<td>10</td>
</tr>
<tr>
<td>726/4Ab</td>
<td>812b</td>
<td>14</td>
</tr>
<tr>
<td>659/5Ac</td>
<td>639Ab</td>
<td>18</td>
</tr>
<tr>
<td>452/9Ab</td>
<td>756Ab</td>
<td>6</td>
</tr>
<tr>
<td>281/5cd</td>
<td>271b</td>
<td>10</td>
</tr>
<tr>
<td>476/98d</td>
<td>472b</td>
<td>14</td>
</tr>
<tr>
<td>489/15d-g</td>
<td>477b</td>
<td>18</td>
</tr>
<tr>
<td>338/52d-g</td>
<td>452b</td>
<td>6</td>
</tr>
<tr>
<td>313/5h-d-h</td>
<td>348c</td>
<td>10</td>
</tr>
<tr>
<td>419/51d-h</td>
<td>415b</td>
<td>14</td>
</tr>
<tr>
<td>383/16e-h</td>
<td>316c</td>
<td>18</td>
</tr>
<tr>
<td>472/36e-h</td>
<td>376c</td>
<td>6</td>
</tr>
<tr>
<td>377/29e-h</td>
<td>352c</td>
<td>10</td>
</tr>
<tr>
<td>470/29e-h</td>
<td>422c</td>
<td>14</td>
</tr>
<tr>
<td>447/28e-h</td>
<td>437c</td>
<td>18</td>
</tr>
<tr>
<td>457/84e-h</td>
<td>438c</td>
<td>6</td>
</tr>
<tr>
<td>356/19e-h</td>
<td>356c</td>
<td>10</td>
</tr>
<tr>
<td>457/19e-h</td>
<td>456c</td>
<td>4</td>
</tr>
<tr>
<td>467/11fg</td>
<td>413c</td>
<td>14</td>
</tr>
<tr>
<td>197/5gh</td>
<td>412c</td>
<td>18</td>
</tr>
<tr>
<td>155/1Ah</td>
<td>182a</td>
<td>6</td>
</tr>
</tbody>
</table>

میانگین‌هایی که دارای حداکثر یک حرف مشترک هستند، اختلاف معنی‌داری بر اساس آزمون داگنگ در سطح 5 درصد ندارند.
جدول 8- ضرایب همبستگی مؤلفه‌های جوانه‌زنی تحت مدت زمان‌ها هیدروبرمینگ

<table>
<thead>
<tr>
<th>مؤلفه‌ها</th>
<th>جوانه‌زنی</th>
<th>طول</th>
<th>رشته‌چه</th>
<th>ساقه‌چه</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضریب</td>
<td>شاخه</td>
<td>طول</td>
<td>رشته‌چه</td>
<td>ساقه‌چه</td>
</tr>
</tbody>
</table>

در هر سه رقم مورد مطالعه در غلظت 0/250 گرم سولفات روی به دست آمده (جدول 8) هرس 1 و همکاران (2005) نیز سیبیت بالای سولفات روی را در کاهش مؤلفه‌های جوانه‌زنی نخود را گزارش کرده‌اند. نتایج جدول تجزیه واریانس ویژگی‌های جوانه‌زنی به ارقام کل تا تحت تیم سولفات روی نشان داد که اثر ساده مدت زمان پرایمینگ بر کلیه صفات مورد بررسی

1 Harris

ولی با افزایش غلظت سولفات روی آز 0/11 به 4 گرم افزایش شاخص طولی بینه بر وی مواد مشاهده شد که این کاهش با شیب مالایبرخی همراه بود. کمترین شاخص طولی بینه بر نزد 20/618 در رقم خرابی در غلظت 4 گرم در لیتر مواد مشاهده شد (جدول 8). اثر معنادار رقم غلظت سولفات روی بر ضریب یکنواختی جوانه‌زنی نشان می‌داد که اکثر تغییرات ضریب یکنواختی جوانه‌زنی تقریباً مشابه ضریب سبز‌ساله‌های جوانه‌زنی دریافت می‌کنند.
نظریه و همکاران: بررسی تأثیر هیدروپایامینگ و اسموپایامینگ با سوالات روی بر خصوصیات جوانانزی...
شکل ۳- اثر متقابل رقم سولفات روي و مدت زمان پرايمینگ (ساعت) بر وزن خشك ساقچه

شکل ۴- اثر متقابل رقم سولفات روي و مدت زمان پرايمینگ (ساعت) بر شاخص وزتي بني بذر

مشاهده شد كه وزن خشك ساقچه در هر سه رقم مورد مطالعه در غلفتههای ۱/۱۰ تا ۲/۰ دررو برد و بین آنها اختلاف معنادار مشاهده نشد. کمترین وزن خشك ساقچه نيز در سه رقم در تيمارهای شاهد مشاهده شد (شکل ۳).

نتایج مقایسه ميانگين اثر متقابل رقم سولفات روی و مدت زمان پرايمینگ نشان داد که بيشترین شاخص وزنی بني بذر در ۱۰/۰۵ و ۰/۱۲/۵ و ۰/۵ با ترتيب در ارقام اکايب، زرقام و طلاتيه در مدت زمان ۱۰ ساعت پرايمينگ مشاهده شد. علت آن را میتوان به بالا بودن وزن خشك گيهجقه در این غلفته و مدت زمان نسبت داد. با افزایش غلفته سولفات روی به بالاتر
نتیجه‌گیری
بر اساس نتایج به دست آمده از این مطالعه، هیدروپریامینگ و پراپام با سولفات روي به عنوان عامل بهبود دهنده جوانه‌زی و مرغوب شدن این مسئله می‌تواند در بهبود کارکرد بذر و افزایش کیفیت بذر در شرایط نامساعد مهیجی شود.

منابع
آذرنیپور، ح. عباسی، م. و عنایی، ع. 1388. ارزیابی و تعمیم نتایج هیدروپریامینگ و اسپرورامینگ بر نسبیه‌های جوانه‌زی آگروپرون الگاتوم (Agropyron elongatum) و اثر هیدروپریامینگ بر جوانه‌زی بذور پیازچه (Allium fistulosum) آل عمرانی‌زاده، س. م. و رضوانی‌پور، ع. 1392. اثرات هیدروپریامینگ بر جوانه‌زی بذور پیازچه (Allium fistulosum) توسط نبات (L). تحت نش شوری. مجله علوم و تکنولوژی بذر. 22: 103-123.

یغمداری، س. ع. 1389. طرح‌های ازامی‌شی در علوم کشاورزی. انتشارات دانشگاه تهران. صفحه 348.

جودی، م. و شیرفندی‌زاده، ف. 1385. بررسی اثر هیدروپریامینگ در ارگان جو. مجله بیوان. 111(9): 1019-1099.

رودی، د. امیری‌آخوندی، ج. و علی‌اصفهانی، ب. 1389. بررسی عملکرد دانه و اجزای عملکرد ارگان زمستانی کلس‌های مختلف در گیاهان و گیاه‌های وابسته به گیاهانی که در شرایط سطحی، اکرم قافلی، ف. و معمار، ح. 1387. اثر برایامینگ بر مؤلفه‌های جوانه‌زی بذر و رشد گیاهی پیوندهایی در گیاهان و فناوری‌های بذر. مجله علوم کشاورزی و منابع طبیعی. 4(5): 101-109.

کمالی، ب. دانش تبلیکی، ق. طبی، م. و هدی‌نیا، ب. 1389. اثر تیمار‌های برایامینگ بر مقاومت به بخار در مرحله جوانه‌زی و رشد اولیه. فصلنامه علمی-پژوهشی تحقیقات زراعی و اصلاح گیاهان مرنی و جنگلی ایران. 18(2): 268-272.

شافی، ر. و خداوردی، ن. بررسی تأثیر هیدروپریامینگ بر جوانه‌زی و تحت‌اکثریت پرولین در تبیین شرایط بذر. مجله علوم کشاورزی. 1392: 212-217.

عاقلی، ح. و علی‌کریمی، م. 1388. بررسی مهیل‌های مواد و مشکلات توسعه کشت کلزا در خراسان. مجله پژوهش‌های زراعی ایران. 2(7): 515-519.

فرزین، م. و قبادی‌زری، ح. 1392. بررسی اثر هیدروپریامینگ بر جوانه‌زی و تحت‌اکثریت پرولین بذر در تبیین شرایط بذر. مجله علوم کشاورزی. 1392: 212-217.

41 Sharma

Harris, D., Rashid, A., Arif, M., and Yunas, M., 2005. Alleviating micronutrient deficiencies in alkaline soils of the North-West Frontier Province of Pakistan: on-farm seed priming with zinc in wheat and chickpea. Micronutrients in South and South East Asia, 143-151.

Investigation of Hydropriming and Osmopriming With ZnSO₄ Effects on Characteristics Germination of of Three Winter Rapeseed Cultivars

Shahram Nazari ¹*, Mohmmad Ali Aboutalbian², Farid Golzardi³

¹ Ph.D. Student in Crop Ecology, Faculty of Agriculture, University of Bu-Ali Sina, Hamedan, Iran
² Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Bu-Ali Sina, Hamedan, Iran
³ Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

*Corresponding author, E-mail address: sh.nazari92@basu.ac.ir

(Received: 03.03.2015 ; Accepted: 02.11.2015)

Abstract

Seed priming is a method which is a quite effective method in improving germination and seedling establishment. Two separated experiments were performed to determine the best hydro and osmopriming treatments effects on canola’s seed germination. The experiments were performed in seed technology laboratory of Islamic Azad University, Karaj, Iran, 2014. The first experiment contained three canola varieties seeds hydropriming (Okapi, Zarfam and Talayeh) using tap water over time interval 0, 2, 6, 10, 14, 18, 20 and 24 hours. The second experiment included, tree canola cultivars in accompany with six concentrations of ZnSO₄ (0, 0.035, 0.1, 0.4, 1 and 4 gr.Lit⁻¹) over priming time interval of 0, 6, 10 14 and 18 hours. Both experiments were conducted as factorial experiment in the context of completely randomized design (CRD) with four replications. The results revealed that the maximum germination percentage across all cultivars e.g. Okapi (99%), Zarfam (95%) and Talayeh (80%) is achieved at 10 hours hydropriming interval. Also concerning to germination rate, the best performance was observed for Talayeh cultivar at 10 hydropriming hour’s interval. The most vigor longitudinal and vigor weighted indices (1050.55 and 4.56) were observed in the Okapi cultivar in the fourth hydropriming level. The interaction between the cultivars, concentration of ZnSO₄ and osmopriming time was significant for all characters except for shoot dry weight and vigor weighted Index. The three way interaction shown that the highest shoots dry weight (0.11, 0.057 and 0.055) and also vigor weighted index observed in Okapi, Zarfam and Talayeh cultivar in 0.035 concentration of ZnSO₄ (gr.lit⁻¹) at the time was 10 hours, respectively. The results of this study showed that hydropriming and ZnSO₄ might improve the performance of rapeseed Cultivars seed.

Keywords: Germination percentage, Germination rate, Vigor weighted index, Shoot dry weight