بررسی تأثیر هیدروپراپایمینگ و اسمورپراپایمینگ با سولفات روش بر خصوصیات جوانه‌زی سه رقم کلرای پاییزه

شهروی نظری، محمدعلی اطوبالیان، فرید گلرزدی

۱ دانشجوی دکتری اکولوژی گیاهان زراعی، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان
۲ استادیار گروه زراعت، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان
۳ مؤسس تحصیلات اصلاح و تهیه نهال و بذر، سازمان تحصیلات آموزش و تربیت کشاورزی، کرج
sh.nazari92@basu.ac.ir

(تاریخ دریافت: ۱۳۹۳/۱۲/۱۲؛ تاریخ پذیرش: ۱۳۹۴/۸/۳۰)

چکیده
برای پرینگ بذر یکی از روشهای بسیار مؤثر در بهبود جوانه‌زنی و استقرار گیاهه‌ها است. به منظور تعیین بهترین تیمارهای هیدروپراپایمینگ و اسمورپراپایمینگ و زیگ‌ها گیاهان جوانه‌زی بذر کلزا آزمایش‌های جدایگانه در سال ۱۳۹۳ در آزمایشگاه فناوری بذر دانشگاه آزاد اسلامی واحد کرج انجام شد. آزمایش اول، هیدروپراپایمینگ بذرهای سه رقم کلزا (آگاگی، زرفلام و طلایی) با بهره‌گیری از آب معمولی بود که در سطح زمان ۰/۰، ۰/۶، ۱/۰، ۱/۴ و ۱/۸ ساعت آبیگیری انجم شد. آزمایش دوم شامل سه رقم کلزا، شش غلفت سولفات روش (۰/۳۵/۰، ۰/۴/۰ و ۴/۰ گرم در لیتر) و طول دوره پرایمینگ انجام داد. سه رقم کلزا در هر سه رقم گیاهان زراعی و طلوی به ترتیب با ۹۵ و ۸۰ درصد در هیدروپراپایم ۱۰ ساعت مشاهده شدند. همچنین در ارتباط با سرعت جوانه‌زنی، بهترین سرعت جوانه‌زنی مربوط به رقم طلایی در هیدروپراپایم ۱۰ ساعت بود. بیشترین شاخص طولی بهبود و شاخص وزنی بهبود به ترتیب با ۵/۰۵ و ۴/۵۲ در رقمو ۱/۵۵/۰ گرم کلزا در سطح چهارم هیدروپراپایم مشاهده شد. اثبات متقابل رقم، غلظت سولفات روی و در مدت زمان اسمورپراپایمگ کل مورد بررسی بود بنابراین نتایج نشان داد که بیشترین بهبود در هیدروپراپایم ۱۰ ساعت بود. بیشترین شاخص طولی بهبود و شاخص وزنی بهبود به ترتیب با ۴/۵۲ و ۵/۰۵ گرم کلزا در سطح چهارم هیدروپراپایم مشاهده گردید.

واژه‌های کلیدی: درصد جوانه‌زنی، سرعت جوانه‌زنی، شاخص وزنی بی‌بذر، وزن خشک ساقه‌چه

مقدمه
کلزا یکی از ۴۶ درصد نسبت روغن دانه‌ی بذر که از مهم‌ترین گیاهان زراعی است که در سطح دنیا برای استخراج روغن کشت شده و از بیشترین میزان رشد سالانه ی برای اندازه‌گیری بیشترین میزان دنیا گزارش شده‌است.

Brassica napus L.
نظریه و همکاران: برسی تأثیر هیدروپریامینگ و اسموپریامینگ با سوالات روز در خصوصیات جوانان‌زی...
گرچه در اکثریت هیدروپریامینگ و اسپورتازومگنت جهت شناسایی بهترین تیمار برای کشت در مزرعه انجام پذیرفت.

مواد و روش‌ها

به منظور بررسی اثرات هیدروپریامینگ و اسپورتازومگنت بر جوانگرزی و گیاهجات سه رنگ کلزا در آزمایش‌های مختلف فناکتوریل در قالب طرح کامل پاسخگو و با چهار تکرار مورد بررسی قرار گرفتند. در آزمایش‌ها به صورت فاکتوریل در قالب طرح چندفازه و با محوطه‌ی دو اصلی (طلایی، آبی و زرقاء) و دو ماده جوانگرزی در هفت سطح شامل صفر، ۲، ۴، ۶، ۸ و ۱۰ ساعت قرار دادن به‌دنرها در آزمایش‌های عملی شرکت کرد. فاکتور اول از ماده‌های طلایی (طلایی، آبی و زرقاء) و فاکتور دوم شامل سطح‌های رطوبت بود. مشابه با محصول فاکتوریل. این آزمایش شامل ۴۸ شریک بود. در این آزمایش از جمله کاربردی ضعیف و سیب بذرها به‌طور کامل ضعف یافته شدند. این محدودیت برای محصول هیپکریت سیدم ۳ درصد و برای فاکتوریل تا حدود ۵۰ درصد ضعف در نظر گرفته شد. به‌ویژه از آنجایی که این آزمایش شامل ۴۸ شریک بود. در این آزمایش، از جمله کاربردی ضعیف و سیب بذرها به‌طور کامل ضعف یافته شدند. این محدودیت برای محصول هیپکریت سیدم ۳ درصد و برای فاکتوریل تا حدود ۵۰ درصد ضعف در نظر گرفته شد. به‌ویژه از آنجایی که این آزمایش شامل ۴۸ شریک بود. در این آزمایش، از جمله کاربردی ضعیف و سیب بذرها به‌طور کامل ضعف یافته شدند. این محدودیت برای محصول هیپکریت سیدم ۳ درصد و برای فاکتوریل تا حدود ۵۰ درصد ضعف در نظر گرفته شد. به‌ویژه از آنجایی که این آزمایش شامل ۴۸ شریک بود. در این آزمایش، از جمله کاربردی ضعیف و سیب بذرها به‌طور کامل ضعف یافته شدند. این محدودیت برای محصول هیپکریت سیدم ۳ درصد و برای فاکتوریل تا حدود ۵۰ درصد ضعف در نظر گرفته شد. به‌ویژه از آنجایی که این آزمایش شامل ۴۸ شریک بود. در این آزمایش، از جمله کاربردی ضعیف و سیب بذرها به‌طور کامل ضعف یافته شدند. این محدودیت برای محصول هیپکریت سیدم ۳ درصد و برای فاکتوریل تا حدود ۵۰ درصد ضعف در نظر گرفته شد. به‌ویژه از آنجایی که این آزمایش شامل ۴۸ شریک بود. در این آزمایش، از جمله کاربردی ضعیف و سیب بذرها به‌طور کامل ضعف یافته شدند. این محدودیت برای محصول هیپکریت سیدم ۳ درصد و برای فاکتوریل تا حدود ۵۰ درصد ضعف در نظر گرفته شد. به‌ویژه از آنجایی که این آزمایش شامل ۴۸ شریک بود. در این آزمایش، از جمله کاربردی ضعیف و سیب بذرها به‌طور کامل ضعف یافته شدند. این محدودیت برای محصول هیپکریت سیدم ۳ درصد و برای فاکتوریل تا حدود ۵۰ درصد ضعف در نظر گرفته شد. به‌ویژه از آنجایی که این آزمایش شامل ۴۸ شریک بود. در این آزمایش، از جمله کاربردی ضعیف و سیب بذرها به‌طور کامل ضعف یافته شدند. این محدودیت برای محصول هیپکریت سیدم ۳ درصد و برای فاکتوریل تا حدود ۵۰ درصد ضعف در نظر گرفته شد. به‌ویژه از آنجایی که این آزمایش شامل ۴۸ شریک بود. در این آزمایش، از جمله کاربردی ضعیف و سیب بذرها به‌طور کامل ضعف یافته شدند. این محدودیت برای محصول هیپکریت سیدم ۳ درصد و برای فاکتوریل تا حدود ۵۰ درصد ضعف در نظر گرفته شد. به‌ویژه از آنجایی که این آزمایش شامل ۴۸ شریک بود. در این آزمایش، از جمله کاربردی ضعیف و سیب بذرها به‌طور کامل ضعف یافته شدند. این محدودیت برای محصول هیپکریت سیدم ۳ درصد و برای فاکتوریل تا حدود ۵۰ درصد ضعف در نظر گرفته شد. به‌ویژه از آنجایی که این آزمایش شامل ۴۸ شریک بود. در این آزمایش، از جمله کاربردی ضعیف و سیب بذرها به‌طور کامل ضعف یافته شدند. این محدودیت برای محصول HEPZEBEHAYE YAZD-IRAN/SAL SOOM/SHAMA 1395/PAGE 41

Birds Destruoal74

1 Torabi and Rabii

2 ظلادهای مختلف

3 Spring type

4 Winter type

با توجه به اینکه کلزا یک ماده عمداً در تناوب با محصولات تابسته قرار می‌گیرد، بنابراین کاشت این گیاه کاربردی برای دامنه زمینی توجه شده انجام می‌گیرد. حسین صائبیت نمکین است که جوانگرزی ترش می‌گیرد. سه رنگ گیاهی‌ها بمار با اجرای هیپکریت سیدم ۵ درصد کامل ضعف شده و داخل فولوم آلومینیومی در آن ۱۲۰ درجه مورد گریختن ترس به‌طور کامل گذشته می‌باشد.
نگری و همکاران: بررسی تأثیر هیدروپریامینگ و اسپروک ریشچه با سولفات روتیر بر خصوصیات جوانه‌نی گیاه

میانگین زمان جوانه‌نی که با استفاده از رابطه 6 محاسبه شد (پولی و بلوک، 1994):

\[
\text{تعداد روزهای محاسبه شده از زمان کاشت} = \frac{\sum D_{ni}}{n}
\]

تعداد بذری جوانه‌نی در دِی گردیده. در نتایج سپرده کیفیت اجرای این آزمایش نشان داد که میانگین زمان جوانه‌نی که با استفاده از روش تبدیل سطوح مختلف هیدرورامپینگ با استفاده از روش تبدیل معکوس تبدیل شدند. در مطالعاتی که در آن‌ها یکی از مصرف‌های زمانی برای ساختار شکلا ایجاد شده استفاده (بی‌گیمی، 1388)، نتایج با استفاده از نرم‌افزار MSTAT-C و SAS مورد تجربه آماری قرار گرفته و مقیاس مهم‌ترین از آزمون داتنک در سطح احتمال 1 درصد انجام شد.

نتایج و بحث

اثر هیدروپریامینگ بر وزن گیاه جوانه‌نی

اثر رقم به جز وزن خشک ساقه و ریشه و همچنین ضریب پکتولواخی جوانه‌نی در تمامی سطوح یکسره مورد بررسی قرار گرفت (جدول 2). همچنین در همکناری رقم و مدت زمان هیدروپریامینگ به جز وزن خشک ریشه و ضریب پکتولواخی جوانه‌نی در کلیه سطوح در سطح 1 درصد معنی‌دار بود (جدول 2). نتایج مقایسه میانگین اثر متقابل رقم و مدت زمان هیدروپریامینگ بر درصد وزن خشک جوانه‌نی نشان داد که هیدروپریامینگ در هر سه رقم مورد مطالعه، نسبت به تیمار شاهد وضعیت مطلوب‌تر ایجاد کرد (جدول 2) ابزارهای و همکاران (2012) یا بررسی اثر هیدروپریامینگ بر خصوصیات جوانه‌نی سه رقم کلا (RGS 003 Hay 300 5 و Hay 401). Hay 300) دانست که هیدروپریامینگ سبب افزایش درصد جوانه‌نی در هر سه رقم مورد بررسی نسبت به تیمار شاهد گردید.

سانترگارد به مدت 3 ساعت حرارت داده شدند (کیا و همکاران، 2004). درون هر پتری دیش تعداد 20 عدد بذر از هر تیمار مورد مطالعه روی کاغذ صافی کشته گردیده و به آنها 5 میلی‌لیتر آب مقطر اضافه شد. فراوانی جوانه‌زی با جذب آب توسط بذر خشک در حال استراحت، شروع و با خروج رشته‌ای از ساختاری که آن‌ها گرفتار کاملاً می‌شوند، در این اساس، خروج دو میلی‌متری رشته‌ی به عنوان میزان بذر جوانه‌زی در نظر گرفته شد (سلطانی و همکاران، 1388).

ثبت جوانه‌زی از زمین آغاز و در 44 ساعت یکبار انجام شد. این آزمایش در داخل زمین‌نو و در دامای 20 درجه سانتی‌گراد انجام گرفت. در روز دهم بعد از انجام آزمایش طول ریشه و ساقه و وزن خشک آن‌ها با استفاده از چند عادی کاهی اندازه‌گیری شد. در این آزمایش برای محاسبه شاخص‌های سرعت و درصد جوانه‌زی، شاخص طول برینه بیشتر، شاخص وزن برینه بیشتر از روابط 1، 2 و 4 استفاده شد (چودودی و شریفزاده، 1385):

\[
\text{رابطه 1: } \text{سرعت جوانه‌زی} = \sum \frac{n_i}{n_i - d_i}
\]

\[
\text{رابطه 2: } 100 \times \frac{n_i}{n_i - d_i}
\]

\[
\text{رابطه 3: } \text{شاخص طول برینه بیشتر} = \text{میانگین طول گیاهچه سانتی‌متر} \times \text{درصد جوانه‌زی}
\]

\[
\text{رابطه 4: } \text{شاخص وزن برینه بیشتر} = \text{میانگین وزن خشک گیاهچه (گرم)} \times \text{درصد جوانه‌زی}
\]

تعداد پذیره‌ای جوانه‌زی در شمارش هم، قبل از تعداد جوانه‌زی در شمارش هم و تعداد پذیره‌ای کشت شده است. همچنین جهت محاسبه ضریب پکتولواخی جوانه‌زی از رابطه 5 استفاده شد (پولی و بلوک، 1994).

\[
\text{رابطه 5: } \text{ضریب پکتولواخی جوانه‌زی} = \frac{n}{\sum[(MGT - H)^2] + n}
\]

1 Bewley and Black

2 Inverse trasnformation
جدول 1- مشخصات اقراص مورد مطالعه در این تحقیق (بر اساس اطلاعات مؤسسه تحقیقات نهال و بذر کرج)

<table>
<thead>
<tr>
<th>نام رقم</th>
<th>تیپ رشد</th>
<th>نوع گرده افتخالی</th>
<th>تعداد زن هزار دانه/گرم</th>
<th>متوسط عمق‌کرد (تن در هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۶۴</td>
<td>۳۴۱۲۳</td>
<td>۱۸۶۶</td>
<td>غیر هیبرید</td>
<td>پایبند</td>
</tr>
<tr>
<td>۱۳۸۰</td>
<td>۳۴۱۲۳</td>
<td>۱۳۸۰</td>
<td>غیر هیبرید</td>
<td>پایبند</td>
</tr>
<tr>
<td>۱۳۸۳</td>
<td>۳۴۱۲۳</td>
<td>۱۳۸۳</td>
<td>غیر هیبرید</td>
<td>پایبند</td>
</tr>
</tbody>
</table>

ساعت اختلاف معنی‌داری نشان داده بود؛ بنابراین آنچه مسلم است این است که در گیاهان مختلف هیدروپرایمینگ دارای حد اسانسی ای می‌باشد که می‌تواند طول رشد‌ها را بهبود بخش و طول دوره‌های کمر بهبود بخش و آسان‌تر از این دسته‌ها می‌تواند اثر منفی و بازدارنده داشته باشد. جذب بیش از حد آب بسب اهمیت جهانی انتقال هورمونی و آنزیمی درون بذر می‌گردد که به دنیال آن بسب کاهش طول رشدکننده و ساقطه کننده می‌گردد (سیگنت، ۱۹۹۱). از طرفی نظر می‌رسد کاهش طول دوره هیدروپرایمینگ سبب کمرחיפוש رنگ‌آمیزی در فرآیندهای متابولیکی باشد. یکی از نتایج مهم پرایمینگ، بهترین زمان خانه آن است. در اینجا زمان دو و نیم در طول سبب به آب و عدم دستیابی به نتیجه مطلوب می‌شود که این مسئله در هیدروپرایمینگ بسیار مهم‌تر است (آل عمرانیزاد و رضویان، اقامت ۱۳۹۲).

در پرایمینگ، بدنها بجای آب مرحولی دوم جوانه‌زی را طی می‌کنند (انجام تحقیق قبلی) و آماده برای ظهور رشد قرار می‌گیرند. البته هیدروپرایمینگ در محیط رشد قرار می‌گیرند، به‌دلیل پرایمینگ شده، مرحله اول (آب و مرحله دوم جوانه‌زی) را در مدت زمان کوتاه‌تری طی کرده و وارد مرحله سوم جوانه‌زی می‌شوند (شکری و همکاران، ۱۳۸۹).

محمودزاده اردکانی و همکاران (۱۳۸۹) نیز اظهار داشتند که هیدروپرایمینگ سبب افزایش درصد و سرعت جوانه‌زی در بذرهای آفتابگردان گردیده. آنها همچنین بهان داشتند که در بذرهای پراپیم شده عامل کننده رشد‌دهی و ساختار غشاء سلولی در مقایسه با بذرهای کنترل در وضعیت مطلوبتری می‌باشند. بشریت‌های درصد جوانه‌زی و به سه رقم اکتیوم، زرفما و طلایی به ترتیب با ۹۵، ۹۳ و ۸۰ درصد در هیدروپرایمینگ ۱۰ ساعت مشابه دند (جدول ۳) همچنین در ارتباط با سرعت جوانه‌زی بهترین واکنش با ۸۳۱ مربوط به درصد طلایی در هیدروپرایمینگ ۱۰ ساعت بود (جدول ۳). علت افزایش درصد و سرعت جوانه‌زی را می‌توان از افزایش فعالیت‌های ازیم‌های تجزیه کننده مانند افزایش آنزیم‌های سطح شارزات از زمانی در قالب DNA، RNA و ATP افزایش مقدار افزایش تعداد و عین حال ارتفاع عملکرد میتوکندریا نسبت داد (شباهانویک و همکاران، ۲۰۰۳). هیدروپرایمینگ از طریق افزایش سرعت و درصد جوانه‌زی به‌خصوص در بذرهای کنترل که به کار دسته‌گیری می‌گردد، به‌دلیل کاهش در حال مانند جوانه‌زی و نگهداری با جهت گاه‌گزینه در مزرعه می‌باشد. روند کیفی تاثیر نقل‌ریزی و مدت زمان هیدروپرایمینگ بر طول رشد‌های ساقطه‌چی نشان داد که در سه رقم با افزایش مدت زمان هیدروپرایمینگ تا ۱۰ ساعت طول رشد‌های ساقطه‌چی به ساقطه‌چی هم‌ارزه روند صعودی داشت ولی با افزایش مدت هیدروپرایمینگ به ۴۴ ساعت این مؤلفه کاهش یافت و در همین راستا آدنیونون و همکاران (Agropyron elongatum) (۱۳۸۸) اظهار داشت که در گیاهی های هیدروپرایمینگ در درجه ۱۸-۱۲ ساعت افزایش درصد جوانه‌زی به تعداد ۶٪ و

۲ Singh

۱ Shivankar
جدول 2 - تجربه وارانس (میانگین مربعات) و یکه‌های جوانانی بدر و گیاهی‌های ارقام کل از تیمار هیدروپراپینگ

<table>
<thead>
<tr>
<th>شریف طول</th>
<th>ضریب کتک‌بندی</th>
<th>وزن خشک</th>
<th>سطح طول</th>
<th>درصد ریشه‌های ماهیتی</th>
<th>منابع تغییر آزادی</th>
<th>جوانانی</th>
<th>سطح طول</th>
<th>سطح طول</th>
<th>درصد ریشه‌های ماهیتی</th>
<th>منابع تغییر آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.154</td>
<td>0.176</td>
<td>0.153</td>
<td>0.178</td>
<td>0.162</td>
<td>0.182</td>
<td>0.153</td>
<td>0.178</td>
<td>0.178</td>
<td>0.162</td>
<td>0.182</td>
</tr>
</tbody>
</table>

نظر و همکاران

بیشترین طول ریشه‌های در ارقام آکی، زرقوم و طلاهی به ترتیب با 8/78 و 10/111 می‌باشد. در این گزارش شد افزایش سرعت و درصد جوانانی از طریق افزایش تغییر سلولی موجب افزایش طول ریشه و به دنبال آن وزن و رشد خشک ریشه‌چه در بذرها گوجه‌فرنگی افزایش یافت (فاقوق و همکاران، 2005).

جدول تجربه وارانس نشان داد که اثر هیدروپراپینگ بر ضریب کتک‌بندی جوانانی در سطح 5 درصد معنی‌دار بود (جدول 2). نتایج مقایسه میانگین مؤید است که بیشترین ضریب کتک‌بندی جوانانی به ترتیب در مدت زمان‌های 10 و 14 ساعت هیدروپراپین مصایده شد. همچنین بین سیار تیمارها نیز از نظر آماری اختلاف معنی‌داری مشاهده نشد (شکل 3).

نتایج جدول تجربه میانگین نشان داد که وزن خشک ساقه نسبت به رشدخانه در ارقام مورد بهبود بیشتر تحت تأثیر هیدروپراپینگ قرار گرفت (جدول 3). به نظر می‌رسد افزایش طول و ساقه نسبت به شرایط هیدروپراپین به دلیل تأثیر افزایش لایه غیرپتیولیک گسترش دیواره سلولی جذب که توسط اسیرا و همکاران (2003) نیز تأیید شده است.

1. Li
2. Penalosa and Eira
بحث محدودی به زمان هیدروپارامیک بر وضعیت یک‌خوانی جوانانی

بیشترین وزن شکن ساقه‌های با افزایش زمان هیدروپارامیک بر بستگی ندارد. در این مطالعه، تعداد 45 گرم در نمونه فرآوری‌های بسته و دست را داشت. نتایج نشان داد که در مدت زمان هیدروپارامیک بیشتر و کمتر از 10 ساعت طول ساقه‌های کاهش معنی‌داری داشت (جدول 3). دلیل کاهش طول ساقه‌های اثر افزایش مدت زمان‌های هیدروپارامیک را می‌توان به میزان عوامل مزایا و در کاهش مدت زمان هیدروپارامیک به عدم فعالیت‌های آنزیمی‌های ویولینی عامل کر (نیکو) و همکاران (2012). جودی و شریفزاده (2013) نیز با بررسی سرعت فعالیت عامل کر و جرگان و چرخاب کنترل شده اظهار داشتند که با افزایش مدت زمان هیدروپارامیک تا 10 ساعت، طول ساقه‌های کاهش معنی‌داری داشت و افزایش طولی پتیه بذر هم‌سازی می‌شود و می‌تواند با طول ریشه‌های طول ساقه‌های و درصد جوانانی جدول (8) دارد و طبق نتایج به دست آمده در جدول (1) بالاترین طول ریشه‌های ساقه‌های به ترتیب با 14 و 16/12/1 و 4/10 ساعت سانتی‌متر در رقم آکاپی در تیمار هیدروپارامیک 10 ساعت مشاهده شد.

1 Peng
2 Artola

3 Raphanus sativus L.
جدول ۳- اثر متقابل رقم و مدت زمان هیدروپرینیک بر ویژگی‌های جوانانی کلرا

<table>
<thead>
<tr>
<th>شاخص وزنی</th>
<th>شاخص طولی</th>
<th>وزن خشک</th>
<th>طول ساقه‌چه</th>
<th>ساقه‌چه (گرم)</th>
<th>سرعت جوانانی (متر روی زمین)</th>
<th>سرعت جوانانی (بی‌در)</th>
<th>رقم</th>
<th>هیدروپرینیک (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.37</td>
<td>0.36</td>
<td>365.75</td>
<td>0.535</td>
<td>3.44</td>
<td>7.35</td>
<td>0.75</td>
<td>0.54</td>
<td>ab</td>
</tr>
<tr>
<td>0.37</td>
<td>0.36</td>
<td>365.75</td>
<td>0.535</td>
<td>3.44</td>
<td>7.35</td>
<td>0.75</td>
<td>0.54</td>
<td>ab</td>
</tr>
<tr>
<td>0.37</td>
<td>0.36</td>
<td>365.75</td>
<td>0.535</td>
<td>3.44</td>
<td>7.35</td>
<td>0.75</td>
<td>0.54</td>
<td>ab</td>
</tr>
</tbody>
</table>

مطلب شاخص وزنی بی‌در با ۴۵۶ و ۴۷۲ به ترتیب در ارقام آکاپی و زرقاء در هیدروپرایم ۱۰ ساعت مشاهده کرد که در یک‌گروه آمیز فارمزیند، اخلاق معنی‌داری بر اساس آزمون دانگر در سطح ۰.۰۵ دارد.

بدینه است که این تیمار در گروه بالاتری آماری نسبت به سابر تیمارها قرار گرفد. بالاتری شاخص طولی بی‌در در ارقام زرقاء و طلایی با ۶۱۷۳۴/۴۶ نیز در هیدروپرایم ۱۰ ساعت بود (جدول ۳). کمترین شاخص طولی بی‌در نیز مربوط به تیمار شاهده فرد سه رقم بود که اختلاف معنی‌داری بین آنها مشاهده نشد. سطح

میانگین‌های در هر ستون که دارای حرف مشترک هستند، اختلاف معنی‌داری بر اساس آزمون دانگر در سطح ۰.۰۵ دارد.
مجله پژوهشهای بذر ایران/ سال سوم/ شماره اول/ 1395

۴۷

آماری قرار گرفتن (جدول ۵) به‌طور کلی نتایج بیانگر این مسئله است که با افزایش غلظت سولفات روی از ۰.۲۵ تا ۱.۲۵ می‌توان در لیتر در هر رقم درصد و سرعت جوانزی کاهش یافته و میزان درصد و سرعت جوانزی در غلظت‌های بالای اسپروپرایکین را به‌طور سیمی از طریق تجمع این بینه در دو درصد مشبک و می‌شود. در این رابطه تاکوکسا و همکاران (۱۹۵۷) می‌گویند با افزایش پرداخت و سرعت جوانزی همراه با افزایش درصد چرخه و با افزایش مولکولی فیوزهای سولفات روی از طریق افزایش راکتیل در عادم به دلیل این که در لولید در کلروفیل‌های کاهش فعالیت فتوسیستم و NADPH آنزیم آمین کربوکسیاتور و همچنین کاهش سنگر باعث کاهش جذب آب و انتقال مواد غذایی از لبه شده که در نهایت منجر به کاهش درصد و سرعت جوانزی می‌گردد (برادی و همکاران، ۱۹۹۹). نتایج مقایسه میانگین اثر متقابل رقم و غلظت سولفات روی بر طول سلول جوانزی نشان داد که هر رقم تحت تأثیر اثر متقابل قرار گرفتن، به‌طوری که آماده‌سازی بذرها در ارقام و زرفام و طلایی در غلظت‌های ۰.۲۵ تا ۱.۲۵ می‌توان در لیتر و رقم آگاهی در تمامی غلظت‌های مختلط سولفات روی سپس افزایش می‌گردد از دو مولکول نسبت به تئور شاهد گردیده (۵). در هر رقم یک روز در این سنتر هزموان آکسیم می‌باشد (اردار و راسکار، ۲۰۱۴). اکسین با افزایش رشد طولی سلول موشغ افزایش رشد سلول و طولی شدن ریشه و ساقه می‌شود. اکسین همچنین باعث افزایش استطامپدیزی (قابلیت انتقال) دیواره‌های سلول از ATP به طرف عامل پروری می‌شود (سالندر، ۲۰۱۴) می‌شود که از این طریق میزان رشد سلول را تحت تأثیر قرار داده و اعضا افزایش سرعت رشد گیاهی افزایش می‌شود (سالندر، ۱۳۶۸). افزایش همکاران (۱۳۶۸) نیز

۱. Fageria

۲. Tylkowski
۳. Prasad
۴. Sunderland
نظریه و همکاران: بررسی تأثیر هیدروپریمینگ و اسپریپریمینگ با سولفات روي به خصوصیات جوانزنی...
جدول 4- جزئی واریانس (میانگین مربعات) ویژگی‌های جوانبی‌بند و گیاه‌هایی که ارتفاع آن‌ها تحت تیمار سوخت روي

<table>
<thead>
<tr>
<th>رقم</th>
<th>سوخت</th>
<th>جوانبی‌بند</th>
<th>جوانبی‌بند</th>
<th>جوانبی‌بند</th>
<th>جوانبی‌بند</th>
<th>جوانبی‌بند</th>
<th>جوانبی‌بند</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>592</td>
<td>592</td>
<td>592</td>
<td>592</td>
<td>592</td>
<td>592</td>
<td>592</td>
</tr>
<tr>
<td>2</td>
<td>591</td>
<td>591</td>
<td>591</td>
<td>591</td>
<td>591</td>
<td>591</td>
<td>591</td>
</tr>
<tr>
<td>3</td>
<td>590</td>
<td>590</td>
<td>590</td>
<td>590</td>
<td>590</td>
<td>590</td>
<td>590</td>
</tr>
<tr>
<td>4</td>
<td>589</td>
<td>589</td>
<td>589</td>
<td>589</td>
<td>589</td>
<td>589</td>
<td>589</td>
</tr>
<tr>
<td>5</td>
<td>588</td>
<td>588</td>
<td>588</td>
<td>588</td>
<td>588</td>
<td>588</td>
<td>588</td>
</tr>
<tr>
<td>6</td>
<td>587</td>
<td>587</td>
<td>587</td>
<td>587</td>
<td>587</td>
<td>587</td>
<td>587</td>
</tr>
<tr>
<td>7</td>
<td>586</td>
<td>586</td>
<td>586</td>
<td>586</td>
<td>586</td>
<td>586</td>
<td>586</td>
</tr>
<tr>
<td>8</td>
<td>585</td>
<td>585</td>
<td>585</td>
<td>585</td>
<td>585</td>
<td>585</td>
<td>585</td>
</tr>
<tr>
<td>9</td>
<td>584</td>
<td>584</td>
<td>584</td>
<td>584</td>
<td>584</td>
<td>584</td>
<td>584</td>
</tr>
<tr>
<td>10</td>
<td>583</td>
<td>583</td>
<td>583</td>
<td>583</td>
<td>583</td>
<td>583</td>
<td>583</td>
</tr>
<tr>
<td>11</td>
<td>582</td>
<td>582</td>
<td>582</td>
<td>582</td>
<td>582</td>
<td>582</td>
<td>582</td>
</tr>
<tr>
<td>12</td>
<td>581</td>
<td>581</td>
<td>581</td>
<td>581</td>
<td>581</td>
<td>581</td>
<td>581</td>
</tr>
<tr>
<td>13</td>
<td>580</td>
<td>580</td>
<td>580</td>
<td>580</td>
<td>580</td>
<td>580</td>
<td>580</td>
</tr>
<tr>
<td>14</td>
<td>579</td>
<td>579</td>
<td>579</td>
<td>579</td>
<td>579</td>
<td>579</td>
<td>579</td>
</tr>
<tr>
<td>15</td>
<td>578</td>
<td>578</td>
<td>578</td>
<td>578</td>
<td>578</td>
<td>578</td>
<td>578</td>
</tr>
<tr>
<td>16</td>
<td>577</td>
<td>577</td>
<td>577</td>
<td>577</td>
<td>577</td>
<td>577</td>
<td>577</td>
</tr>
<tr>
<td>17</td>
<td>576</td>
<td>576</td>
<td>576</td>
<td>576</td>
<td>576</td>
<td>576</td>
<td>576</td>
</tr>
</tbody>
</table>

توضیحات:
-

میدان‌های در هر ستون که هر عددی جدول هزینه‌ای یک حرف مشترک هستند، اختلاف معنی‌داری پر اساس است. چنان‌که سطح 5 درصدی ندارند.
جدول ۶- اثر مقایسه متداوم زمان پرایمینگ و رقم کلزا بر سرعت جوانخیزی

<table>
<thead>
<tr>
<th>رقم کلزا</th>
<th>متداوم زمان پرایمینگ (ساعت)</th>
<th>شاهد</th>
</tr>
</thead>
<tbody>
<tr>
<td>آکای</td>
<td>۰۰۶۱۶۸ab</td>
<td>۰۰۶۱۶۸ab</td>
</tr>
<tr>
<td>۴۶۹a</td>
<td>۰۰۶۱۶۸ab</td>
<td>۰۰۶۱۶۸ab</td>
</tr>
<tr>
<td>۴۵۳۳ab</td>
<td>۰۰۶۱۶۸ab</td>
<td>۰۰۶۱۶۸ab</td>
</tr>
<tr>
<td>۴۲۰ab</td>
<td>۰۰۶۱۶۸ab</td>
<td>۰۰۶۱۶۸ab</td>
</tr>
<tr>
<td>۴۶۳۳ab</td>
<td>۰۰۶۱۶۸ab</td>
<td>۰۰۶۱۶۸ab</td>
</tr>
<tr>
<td>۴۸۳۳ab</td>
<td>۰۰۶۱۶۸ab</td>
<td>۰۰۶۱۶۸ab</td>
</tr>
<tr>
<td>۴۸۳۳ab</td>
<td>۰۰۶۱۶۸ab</td>
<td>۰۰۶۱۶۸ab</td>
</tr>
<tr>
<td>۴۵۳۳ab</td>
<td>۰۰۶۱۶۸ab</td>
<td>۰۰۶۱۶۸ab</td>
</tr>
</tbody>
</table>

میانگین‌های که دارای حداکثر یک حرف مشترک هستند، اختلاف معنی‌داری بر اساس آزمون دانک در سطح ۵ درصد ندارند.

نامه و توان روش می‌گردد. با افزایش غلظت سوالات روی از ۳۵۰/۰ یک گرم در لیتر مشاهده شد. در هر سه رقم آفت محسوسی داشت به طوری که در اقامت آکای، زرفام و طلاشی به ترتیب ۴۷، ۴۱ و ۴۰ درصد کاهش نشان داد (جدول ۵). در رقم زرفام و طلاشی نیز بیشترین شاخص طولی بینه بذر در غلظت‌های ۳۵۰/۰ گرم در لیتر مشاهده شد.

جدول ۷- اثر مقایسه سوالات روی و مدت زمان پرایمینگ بر طول سالخیچی و شاخص طولی بینه بذر کلزا

<table>
<thead>
<tr>
<th>شاخص طولی بینه بذر (سانتی‌متر)</th>
<th>مدت زمان غلظت سوالات روی (گرم در لیتر)</th>
<th>زمان (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷۷۶/۸۷۶b</td>
<td>۰۰۶۱۶۸a</td>
<td>۰۰۶۱۶۸ab</td>
</tr>
<tr>
<td>۹۶۰/۵۱۶a</td>
<td>۰۰۶۱۶۸a</td>
<td>۰۰۶۱۶۸ab</td>
</tr>
<tr>
<td>۷۳۰/۴۰۴b</td>
<td>۰۰۶۱۶۸a</td>
<td>۰۰۶۱۶۸ab</td>
</tr>
<tr>
<td>۵۵۹/۱۸۶c</td>
<td>۰۰۶۱۶۸a</td>
<td>۰۰۶۱۶۸ab</td>
</tr>
<tr>
<td>۴۶۵/۱۸۶cd</td>
<td>۰۰۶۱۶۸a</td>
<td>۰۰۶۱۶۸ab</td>
</tr>
<tr>
<td>۲۸۶/۷۸۶de</td>
<td>۰۰۶۱۶۸a</td>
<td>۰۰۶۱۶۸ab</td>
</tr>
<tr>
<td>۴۶۳/۴۵۰def</td>
<td>۰۰۶۱۶۸a</td>
<td>۰۰۶۱۶۸ab</td>
</tr>
<tr>
<td>۲۴۸/۱۵۶cd-g</td>
<td>۰۰۶۱۶۸a</td>
<td>۰۰۶۱۶۸ab</td>
</tr>
</tbody>
</table>

میانگین‌هایی که در هر ستون که دارای حداکثر یک حرف مشترک هستند، اختلاف معنی‌داری بر اساس آزمون دانک در سطح ۵ درصد ندارند.
جدول 8- ضرایب همبستگی مؤلفه‌های جوادوزنی تحت مدت زمان‌های هیدروپرامینگ

| مؤلفه‌ها | جوادوزنی | طول | ریشه‌چه | ساقه‌چه | بذر | B
نظری و همکاران: بررسی تأثیر هیدروپرامینگ و اسموبرامینگ با سولفات روی بر خصوصیات جوانزی...

به جز ورود خسک ساقه‌چه و راه‌شیر در سطح 1 درصد معنی‌دار بود. همچنین اثر متقابل رقم و مدت زمان پرامینگ بر سرعت جوانزی بنا در سطح 5 درصد معنی‌دار بود (جدول 4) بررسی اثر متقابل رقم و مدت زمان پرامینگ مؤثر بود که که بیشترین سرعت گزارش شد که با سناریوهای با (به جز میزان شاهد راه طلاهی) اختلاف معنی‌داری نداشت (جدول 6).

نتایج نخست و اولی این داد که اثر متقابل غلظت‌های مختلف سولفات روی و مدت زمان پرامینگ بر طول ساقه‌چه، وزن خسک ساقه‌چه، شاخ صلی بینه برای خود در چندین دوره معیار (جدول 7). بیشترین تأثیر اثر متقابل غلظت و زمان بر طول ساقه‌چه با 9/36 و 9/34 سانتی متبر در مدت‌های 20 و 15 درصد معنی‌دار نبود.

نکات جزئی و چرایی در جدول 4 نشان داد که اثرات متقابل رقم، غلظت سولفات روز و مدت زمان پرامینگ بر کلیه عناصر مورد بررسی به جز وزن خسک ساقه‌چه و شاخ صلی بینه به دقت (0/10%) اثر معنی‌دار نداشت. نتایج مقایسه میان میانگین اثرات متقابل سه‌گانه حاکی از این است که اکثر پرامینگ با سولفات در کلیه غلظت‌های محل و مدت زمان خسک ساقه‌چه نسبت به تیمار شاهد رودی (بایان) وزن خسک ساقه‌چه در ادغام آلاین، وزن و رطوبیه به طوری 0/101، 0/100، 0/100، 0/100 و 0/100 گرم در غلظت 0/100، 0/100، 0/100، 0/100 و 0/100 گرم در لیتر سولفات روی در مدت زمان 10 ساعت مشاهده شد (شکل 3). همیستانی و معیار مراقبت به وزن خسک ساقه‌چه با طول ساقه‌چه (0/100) و جود ارز دارد (جدول 6) دلیل این اثر معنی‌داری بین وزن خسک ساقه‌چه با طول ساقه‌چه (0/100) و جود ارز دارد (جدول 6) دلیل این اثر معنی‌داری بین وزن خسک ساقه‌چه در نتیجه تجمع ماده خشک در این غلظت و مدت زمان در هر سه رقم توجیه کرد. علی‌رغم کاهش وزن خسک ساقه توسط افزایش غلظت سولفات روز از 0/100 گرم در لیتر به بالاتر، ولی

3 LEA
4 Chiu
5 Murungu
6 Slaton
7 Capron
شکل 3- اثر منفیال رقم سولفات روی و مدت زمان برایمینگ (ساعت) بر وزن خشک ساقچه

شکل 4- اثر منفیال رقم سولفات روی و مدت زمان برایمینگ (ساعت) بر وزن خشک ساقچه

مشاهده شد که وزن خشک ساقچه در هر سه رقم مورد مطالعه در غلظت‌های 0/1 تا 0/4 گرم در لیتر از روند تابیت پروری کرد و بین آنها اختلاف معنی‌داری مشاهده نشد. کمترین وزن خشک ساقچه نیز در هر سه رقم در تیمارهای شاهد مشاهده شد (شکل 3).

نتایج مقایسه میانگین اثر منفیال رقم، غلظت سولفات روی و مدت زمان برایمینگ نشان داد که بیشترین شاخص وزنی بینه بذر در 0/35 غلظت و مدت زمان در تیمار شاهد مشاهده شد (شکل 4). ضریب شاخص وزنی بینه بذر همبستگی منفی و معنی‌داری در سطح احتمال 1 درصد با داده‌های (r=0/42*** و سرعت جوانه‌زایی (r=0/55*** و طول رشد جوانه (r=0/73*** و همچنین وزن خشک ساقچه (r=0/70***) مشاهده شد.
نتیجه‌گیری
بر اساس نتایج به دست آمده از این مطالعه، هیدروپراپامینگ و برایم با سولفات روي بهعویان عامل بهبوددهنده جوانژنی معرفی شدند. این مسئله می‌تواند در بهبود کارکرد بذر و افزایش کیفیت بذر در شرایط نامساعد محیطی شود.

مباحث
آذری‌نژاد، ح. عباسی، م. و عناصری، ع. 1388. ارزیابی و تعیین تیمارهای هیدروپراپامینگ و اسومپراپامینگ بر وزنهٔ جوانژنی Agropyron elongatum ویژگی‌های جوانژنی آگروپرون التگاتوم. Agropyron elongatum (L.)

Allium fistulosum آل عمرانی‌نژاد، س. م. و رضوانی‌اقلیم، ع. 1392. اثرات هیدروپراپامینگ بر جوانژنی بذر پیازچه (L.)

بيغمیری، س. ع. 1388. طرح‌های آزمایشی در علوم کشاورزی، انتشارات دانشگاه تهران. صفحه 348.

رودی، د. امیری اولان، ج. و علی‌زاده، ب. 1387. بررسی عملکرد دانه و اجزای عملکرد ارقط زمستانی کلزا طی تاریخ‌های کاشت مختل در کر. مجله دانش کشاورزی یزد، 140: 151-163.

علاقه، ح. و دوخته، م. 1378. بررسی مهم‌ترین مواد و مشکلات توسعه کشت کلزا در خراسان. مجله پژوهش‌های زراعی ایران. (3): 505-514.

41 Sharma

Harris, D., Rashid, A., Arif, M., and Yunas, M., 2005. Alleviating micronutrient deficiencies in alkaline soils of the North-West Frontier Province of Pakistan: on-farm seed priming with zinc in wheat and chickpea. Micronutrients in South and South East Asia, 143-151.

Investigation of Hydropriming and Osmopriming With ZnSO₄ Effects on Characteristics Germination of of Three Winter Rapeseed Cultivars

Shahram Nazari ¹*, Mohammad Ali Aboutalbian ², Farid Golzardi ³

¹ Ph.D. Student in Crop Ecology, Faculty of Agriculture, University of Bu-Ali Sina, Hamedan, Iran
² Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Bu-Ali Sina, Hamedan, Iran
³ Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
*Corresponding author, E-mail address: sh.nazari92@basu.ac.ir
(Received: 03.03.2015 ; Accepted: 02.11.2015)

Abstract

Seed priming is a method which is a quite effective method in improving germination and seedling establishment. Two separated experiments were performed to determine the best hydro and osmopriming treatments effects on canola’s seed germination. The experiments were performed in seed technology laboratory of Islamic Azad University, Karaj, Iran, 2014. The first experiment contained three canola varieties seeds hydropriming (Okapi, Zarfam and Talayeh) using tap water over time interval 0, 2, 6, 10, 14, 18, 20 and 24 hours. The second experiment included, tree canola cultivars in accompany with six concentrations of ZnSO₄ (0, 0.035, 0.1, 0.4, 1 and 4 gr.Lit⁻¹) over priming time interval of 0, 6, 10 14 and 18 hours. Both experiments were conducted as factorial experiment in the context of completely randomized design (CRD) with four replications. The results revealed that the maximum germination percentage across all cultivars e.g. Okapi (99%), Zarfam (95%) and Talayeh (80%) is achieved at 10 hours hydropriming interval. Also concerning to germination rate, the best performance was observed for Talayeh cultivar at 10 hydropriming hour’s interval. The most vigor longitudinal and vigor weighted indices (1050.55 and 4.56) were observed in the Okapi cultivar in the fourth hydropriming level. The interaction between the cultivars, concentration of ZnSO₄ and osmopriming time was significant for all characters except for shoot dry weight and vigor weighted Index. The three way interaction shown that the highest shoots dry weight (0.11, 0.057 and 0.055) and also vigor weighted index observed in Okapi, Zarfam and Talayeh cultivar in 0.035 concentration of ZnSO₄ (gr.lit⁻¹) at the time was 10 hours, respectively. The results of this study showed that hydropriming and ZnSO₄ might improve the performance of rapeseed Cultivars seed.

Keywords: Germination percentage, Germination rate, Vigor weighted index, Shoot dry weight